The phenomenon of surface plasmon resonance is often used in various devices of photonics and optoelectronics, for which the speed of response and the ability to control the parameters of devices are important. The use of high- temperature superconductors as plasmonic structures has a number of features, the most important of which is low damping. In this paper, we consider the characteristic of surface plasmon resonance in nanocomposite structures consisting of a dielectric matrix with superconducting inclusions. The temperature dependence of the dielectric constant of the superconductor is calculated taking into account the two-fluid model. It is shown that the surface plasmon frequency highly depends on the temperature, which makes it possible for the practical application of nanocomposite superconductors in the design of bandpass notch filters.

1.
V.
Amendola
,
R.
Pilot
,
M.
Frasconi
,
O. M.
Maragò
and
M. A.
Iatì
,
Journal of Physics: Condensed Matter
29
(
20
),
203002
42
(
2017
).
2.
J.
Liu
, at al.,
Materials
,
11
(
10
),
1833
(
2018
)
3.
L.
Bonatti
,
G.
Gil
,
T.
Giovannini
,
S.
Corni
, and
C.
Cappelli
,
Frontiers in Chemistry
8
,
340
15
(
2020
).
4.
J. A.
Scholl
,
A. L.
Koh
and
J. A.
Dionne
,
Nature
483
,
421
427
(
2012
).
5.
M.
Hentschel
,
B.
Metzger
,
B.
Knabe
,
K.
Buse
and
H.
Giessen
,
Beilstein Journal of Nanotechnology
7
,
111
120
(
2016
).
6.
R. M. S.
Pereira
,
J.
Borges
,
G. V.
Smirnov
,
F.
Vaz
and
M.I.
Vasilevskiy
,
ACS Photonics
,
1
25
(
2019
).
7.
N. B.
Sabera
,
A.
Mezni
,
A.
Alrooqi
and
T.
Altalhi
,
Journal of Materials Research and Technology
9
(
6
),
15233
15262
(
2020
).
8.
M. V.
Golovkina
, in
SIBCON-2009, International Siberian Conference on Control and Communications Proceedings
(
Tomsk State University of Control Systems and Radioelectronics
,
Radar R and D, Tomsk
,
2009
), pp.
133
137
.
9.
M. I.
Stockman
, et al.,
J. Opt.
20
,
043001
(
2018
).
10.
Y.
Laplace
and
A.
Cavalleri
,
Advances in Physics: X
1
(
3
),
387
411
(
2016
).
11.
J.
Okamoto
,
A.
Cavalleri
and
L.
Mathey
,
Phys. Review Letters
117
(
22
),
227001
6
(
2016
).
12.
Y.
Laplace
and
A.
Cavalleri
,
Advances in Physics: X
1
(
3
),
387
411
(
2016
).
13.
Y.
Ma
,
M.
Eldlio
,
H.
Maeda
,
J.
Zhou
and
M.
Cada
,
Appl. Physics Express
9
(
7
),
072201
(
2016
).
14.
A.
Eftekharian
,
H.
Atikian
and
A. H.
Majedi
,
Optics Express
21
(
3
),
3043
(
2013
).
15.
F. W.
Carter
,
D. F.
Santavicca
and
D. E.
Prober
,
Optics Express
22
(
18
),
22062
(
2014
).
16.
J.
Qin
, et al.,
Nanotechnology
31
,
305708
14
(
2020
).
17.
Y. F.
Wu
, et al.,
Physical Review B
101
,
174502
(
2020
).
18.
S. K.
Hasanain
,
N.
Akhtar
and
A.
Mumtaz
,
Journal of Nanoparticle Research
13
(
5
),
1953
1960
(
2010
).
19.
Y.
Zhang
 et al.,
Sn. Sci Rep
6
,
32963
(
2016
).
20.
K. Y.
Arutyunov
, et al.,
Physics of the Solid State
61
(
9
), pp.
1559
1562
(
2019
).
21.
V. N.
Smolyaninova
, et al.,
Scientific Reports
4
,
7321
5
(
2014
).
22.
I. I.
Smolyaninov
and
V. N.
Smolyaninova
,
Physical Review B
93
,
184510
(
2016
).
23.
A.G.
Glushchenko
and
M.V.
Golovkina
,
Technical Physics
52
(
10
),
1366
1368
(
2007
).
24.
M.V.
Golovkina
,
Journal of Physics: Conference Series
1679
(
2
),
022061
(
2020
).
25.
O. G.
Vendik
,
I. B.
Vendik
and
D. I.
Kaparkov
,
IEEE Trans. on Microwave Theory and Techniques
46
,
469
478
(
1998
).
26.
P. N.
Yudin
and
I. B.
Vendik
,
Technical Physics Letters
29
(
5
),
426
429
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.