Waelz-oxide is a zinc-containing material for the production of metallic zinc. Waelz-oxide should be pretreated to remove chlorides. Microwave heating and calcination of zinc-containing materials by an electromagnetic field of ultrahigh frequency is a promising method in metallurgy. In laboratory conditions, the microwave process of calcining zinc-containing materials (an analog of Waelz oxide) was investigated using the method of mathematical planning of experiments. The effect of power of microwave radiation, duration of the calcination process, and initial mass of the sample on the efficiency of chloride ion removal from the zinc-containing material has been studied. The optimum conditions are the following: power of microwave oven - 1400 W, processing time - 600 seconds and initial sample weight - 20 grams. Under the indicated process conditions, the residual content of chloride ion in the calcined product was 0.05 wt.%.

1.
U. S. Geological Survey
,
Mineral commodity summaries 2020
(
U.S. Geological Survey
,
Reston, Virginia
:
2020
).
2.
R. A.
Barroso
,
ILZSG spring 2021 – Press Release
(
International Lead and Zinc Study Group
,
Lisbon
,
2021
).
3.
A. G.
Ryazanov
,
A. V.
Senin
, and
O. V.
Khmeleva
,
Materials Science Forum
946
474
479
(
2019
).
4.
Q.
Ye
,
Z.
Peng
,
G.
Li
,
J.
Lee
,
Y.
Liu
,
M.
Liu
,
L.
Wang
,
M.
Rao
,
Y.
Zhang
, and
T.
Jiang
,
ACS Sustain. Chem. Eng.
7
9515
(
2019
).
5.
J. J.
Wijenayake
and
H. S.
Sohn
,
Hydrometallurgy
198
,
105466
(
2020
).
6.
F.
Carranza
,
R.
Romero
,
A.
Mazuelos
, and
N.
Iglesias
,
J. Environ. Manage.
165
,
175
(
2016
).
7.
P. I.
Grudinsky
,
V. G.
Dyubanov
, and
P. A.
Kozlov
,
Inorg. Mater. Appl. Res.
10
,
496
(
2019
).
8.
X.
Lin
,
Z.
Peng
,
J.
Yan
,
Z.
Li
,
J.Y.
Hwang
,
Y.
Zhang
,
G.
Li
, and
T.
Jiang
,
J. Clean. Prod.
149
,
1079
(
2017
).
9.
J. F.
Pusateri
,
J. R.
de Wet
, and
B.
Tirpak
,
Miner. Met. Mater. Ser., PbZn 2020: 9th International Symposium on Lead and Zinc Processing, California, 2020
, (
Springer Nature Switzerland AG
,
Switzerland
,
2020
), pp.
75
90
.
10.
R. R.
Asadulin
,
A. E.
Pavlyuk
, and
O. V.
Belyakov
,
Tsvetnye Met.
2020
,
43
(
2020
).
11.
M.
Lashgari
and
F.
Hosseini
,
J. Chem.
(
2013
).
12.
A.
Selke
,
L.
Stencel
,
M.
Fatyga
,
B.
Pieczonka
, and
Ł.
Ziyba
,
Miner. Met. Mater. Ser. Proceedings of the 3rd Pan American Materials Congress
, San Diego,
2017
, (
Springer International Publishing
,
Switzerland
), pp.
661
668
.
13.
A. M.
Degtyarev
,
D. A.
Ivakin
,
Y. P.
Shumilin
, and
S. P.
Mayorov
,
Tsvetnye Met.
2015
,
31
(
2015
).
14.
G.
Chen
,
Y.
Ling
,
Q.
Li
,
H.
Zheng
,
J.
Qi
,
K.
Li
,
J.
Chen
,
J.
Peng
,
L.
Gao
,
M.
Omran
, and
F.
He
,
J. Mater. Res. Technol.
9
,
7862
(
2020
).
15.
Y. V.
Bykov
,
K. I.
Rybakov
, and
V. E.
Semenov
,
J. Phys. D. Appl. Phys.
34
,
R55
(
2001
).
16.
A. G.
Ryazanov
,
A. V.
Senin
, and
V. D.
Nasonov
,
Solid State Phenom.
316
705
710
(
2021
).
17.
A. G.
Ryazanov
,
A. V.
Senin
, and
D. M.
Galimov
,
Key Eng. Mater.
887
172
177
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.