Surface and volume modification processes computer simulation for Al – Al2O3, Be–BeO, Ti – TiO2 nanostructures under the ion bombardment action has been carried out. The ion implantation-initiated processes by ion bombardment in a He-Ne mixture is analysed. Modeling of ion implantation using Maple computer mathematics into nanolayers of metal-dielectric structures was performed for a He-Ne discharge, taking into account the available experimental data obtained by various scientific schools, including with the participation of the authors of this work. The obtained mathematical calculated dependences of the depth distribution of the Al – Al2O3, Be – BeO, and Ti – TiO2 dielectric layers depending on the energy of the implanted He+ and Ne+ ions are important for creating long-life electron sources for gas-discharge lasers and other nanostructures, where their production is associated with measurements in the nanoscale range. and computer modeling of nanoobjects. It is shown that the process of ion doping of a metal oxide on a metal substrate leads to a modification of the band diagram of dielectric-metal nanostructures. Moreover, at an energy of He+ and Ne+ equal to 100 eV, the penetration depth of helium ions into Al – Al2O3, Ti – TiO2, and Be – BeO is 12.24 nm, 8.79 nm, and 3.76 nm, respectively, and for neon ions - 0, 99 nm, 0.64 nm and 0.38 nm. Consequently, the distribution profile of intercalated ions in a He-Ne discharge is as follows: neon ions occur mainly in the near-surface layer of the dielectric film of the nanostructure, while helium ions penetrate into its bulk to a depth comparable to the film thickness. In this case, the maximum of the distribution of bombarding ions is located closer to the surface of the dielectric film, depending on its properties in the series: BeO – TiO2 − Al2O3, which predetermines a decrease in the thickness of the dielectric in this type of nanostructures.

1.
A. P.
Korzhavyi
,
V. P.
Marin
and
A. S.
Sigov
,
Science-intensive technologies
3
(
4
),
20
31
(
2002
).
2.
D. K.
Nikiforov
,
A. P.
Korzhavyi
and
K. G.
Nikiforov
,
Emitting nanostructures metal-metal oxide: physics and applications
(
MSTU Publishing House named after N.E. Bauman
,
Moscow, Russia
,
2009
), p.
156
.
3.
D. K.
Nikiforov
,
A. P.
Korzhavyi
and
K. G.
Nikiforov
,
RGPU News named after A.I. Gertsen
11
(
79
),
153
159
(
2009
).
4.
G. G.
Bondarenko
,
D. K.
Nikiforov
and
A. P.
Korzhavyi
,
J. Perspective Materials
1
,
224
225
(
2007
).
5.
S. A.
Hague
,
S.
Koops
,
N.
Tokmoldin
,
J. R.
Durrant
,
J.
Huang
,
D. D. C.
Bradley
and
E. A.
Palomares
,
Adv. Mater
19
,
683
687
(
2007
).
6.
P.-Ch.
Chen
,
Sh.-J.
Hsieh
,
J.
Zou
and
Ch.-Ch.
Chen
,
Mater. Lett.
133
,
175
178
(
2014
).
7.
C. P.
Barrera-Patino
,
H. D.
Quiroz
,
R. R.
Rey-Gonzalez
and
A.
Dussan
,
Adv. Mater. Lett.
7
(
10
),
802
805
(
2016
).
8.
D.
Vasudevan
,
Pol. J. Chem. Technol
1
,
35
37
(
2010
).
9.
Y.
Alivov
,
M.
Klopfer
and
S. Y.
Molloi
,
Appl. Phys. Lett.
96
(
24
),
243502
(
2010
).
10.
D. K.
Nikiforov
,
A. P.
Korzhavyi
and
K. G.
Nikiforov
,
Electronic instrumentation fundamental problems
10
(
2
),
76
78
(
2010
).
11.
D. K.
Nikiforov
,
A. P.
Korzhavyi
,
K. G.
Nikiforov
and
G. G.
Bondarenko
,
Izvestiya vuzov. Physics
56
(
1-2
),
23
26
(
2013
).
12.
Yu. V
Trushin
,
Radiation processes in multicomponent materials. Theory and computer modelling
(
FTI Publishing house
,
St. Petersburg, Russia
,
2001
), p.
384
.
13.
L. V.
Kozhitov
,
V. G.
Kosushkin
,
V. V.
Krapukhin
and
Yu. N.
Parkhomenko
,
Technology of materials for micro-and nanoelectronics
(
MISA Publishing house
,
Moscow, Russia
,
2007
), p.
542
.
14.
D. K.
Nikiforov
,
A. P.
Korzhavyi
and
K. G.
Nikiforov
,
Radioelectronic Instrumentation Fundamental Problems
16
(
1
),
150
152
(
2016
).
15.
V. N.
Sukhovsky
,
A. P.
Korzhavyi
and
V. E.
Kochurikhin
,
Electronic engineering. Series Materials Issue
6
,
70
71
(
1989
).
16.
V. V.
Krapukhin
,
I. A.
Sokolov
and
G. D.
Kuznetsov
,
Physical and chemical foundations of semiconductor materials technology
(
Metallurgy
,
Moscow, Russia
,
1995
), p.
495
.
17.
G. G.
Bondarenko
,
D. K.
Nikiforov
,
S. S.
Strelchenko
and
G. A.
Chistyakov
, “
Cold cathodes thin-film coatings’ destruction features in a gas discharge
,” in
Proceedings of the XVI Int. meeting Radiation Physics of Solids
(
SRIAMT, Moscow, Russia
,
2006
), pp.
327
330
.
18.
K. J.
Gamble
and
D. C.
Malocha
,
IEEE Trans. UFFC
49
(
1
),
47
56
(
2002
).
19.
T. D.
Kenny
and
M. Pereira
da Cunha
, “
6D-1 Equivalent Circuit Model and Parameter Extraction for HVPSAW
,” in
Proc. IEEE Ultrason. Symp
(
IEEE, Vancouver, Canada
,
2010
), pp.
363
366
.
20.
A. V.
Chelenko
,
V. O.
Fedorov
,
S. A.
Kuznetsov
and
N. V.
Yarantsev
,
Nonlinear world
15
(
4
),
69
77
(
2017
).
21.
A. K.
Gorbunov
,
G. A.
Chistyakov
,
N. I.
Pchelintseva
and
D. K.
Nikiforov
,
Science-intensive technologies
15
(
10
),
54
60
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.