Trend analysis of extreme ground-level ozone (GLO) concentration is one of the common thoughts to ensure the continuous improvement in ozone performing. This paper aims to identify the GLO concentration trends at 25 air monitoring stations in Peninsular Malaysia for understanding the pattern occur in all GLO data. The trend analysis has been examined by method of non-stationarity test and trend test. The objective of this analysis is to classify the nonstationarity and trend behaviour occur in the GLO data concentration and to examine the performance. Results from the ADF (Augmented Dickey-Fuller) test reveals that stationarity exist in all stations whereas the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test shows only 8 stations have a stationarity. Next, for the trend test using Mann-Kendall. In a test of maximum ground-level ozone concentration increasing after displaying positive Kendall Z-values for 12 stations, 9 stations were found to be dropping after having a negative Kendall Z-value, and the remaining station showed no trend. This trend analysis can be used for monitoring of the performance of level in ground-level ozone concentration and can be used as an idea to statistician to continue the analysis in order to further investigation about ground-level ozone performance.

1.
M. Department of Environment (DoE)
,
“National Policy on the Environment.”
Ministry of Science, Technology and the Environment
,
Malaysia
, pp.
1
24
,
2002
.
2.
H. A.
Aziz
,
N. R.
Awang
,
M. F. Mohd
Amin
, and
N. F. Mohamad
Junaidi
, “
Ground Level Ozone Fluctuational Characteristics within Two Industrial Areas in Malaysia
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
549
, no.
1
,
2020
, doi: .
3.
S.
Shith
,
N. R.
Awang
,
M. T.
Latif
, and
N. A.
Ramli
, “
Fluctuations in nighttime ground-level ozone concentrations during haze events in Malaysia
,”
Air Qual. Atmos. Heal.
, vol.
14
, no.
1
, pp.
19
26
,
2021
, doi: .
4.
N. B. A.
Wahid
 et al., “
Variability of surface ozone (O3) at three different monitoring stations in Perak, Malaysia
,”
J. Adv. Res. Dyn. Control Syst.
, vol.
11
, no.
6
Special Issue, pp.
1938
1947
,
2019
.
5.
A. U. Mohamad
Nazir
,
N. R.
Awang
,
N. A.
Ramli
,
S.
Daliman
, and
H. A.
Aziz
, “
Effect of Monsoonal Period toward Night-time Ground Level Ozone in East Coast Malaysia
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
549
, no.
1
,
2020
, doi: .
6.
S.
Coles
,
An Introduction to Statistical Modeling of Extreme Values
.
Springer-Verlag
,
London
,
2001
.
7.
Y.
Ramos
,
W. J.
Requia
,
B.
St-Onge
,
J. P.
Blanchet
,
Y.
Kestens
, and
A.
Smargiassi
, “
Spatial modeling of daily concentrations of ground-level ozone in Montreal, Canada: A comparison of geostatistical approaches
,”
Environ. Res.
, vol.
166
, no. April, pp.
487
496
,
2018
, doi: .
8.
N.
Izzah
,
M.
Hashim
, and
N. M.
Noor
, “
Variations of Ground-level Ozone Concentration in Malaysia: A Case Study in West Coast of Peninsular Malaysia
,” 2017. Accessed: Apr. 04,
2019
. [Online]. Available: https://www.matec-conferences.org/articles/matecconf/pdf/2017/11/matecconf_etic2017_01048.pdf.
9.
M. Y.
Nasir
,
N. A.
Ghazali
,
M.
Izwan
,
Z.
Mokhtar
, and
N.
Suhaimi
, “
Malaysian Journal of Analytical Sciences Fitting Statistical Distribution Functions on Ozone Concentration Data at Coastal Areas (Penyesuaian Fungsi Taburan Statistik pada Data Kepekatan Ozon di Kawasan Pesisiran Pantai
),”
Malaysian J. Anal. Sci.
, vol.
20
, no.
3
, pp.
551
559
,
2016
, doi: .
10.
H.
Hasan
,
N.
Salam
, and
S.
Kassim
, “
Modeling annual extreme temperature using generalized extreme value distribution: A case study in Malaysia
,”
AIP Conf. Proc.
, vol.
1522
, pp.
1195
1203
,
2013
, doi: .
11.
W.
Wang
,
P. H. A. J. M.
Van Gelder
, and
J. K.
Vrijling
, “
Trend and stationarity analysis for streamflow processes of rivers in Western Europe in the 20th century
,” in
IWA International Conference on Water Economics, Statistics, and Finance
,
2005
, pp.
451
461
.
12.
H.
Hasan
,
N. F. A.
Radi
, and
S.
Kassim
, “
Modeling the distribution of extreme share return in Malaysia using Generalized Extreme Value (GEV) distribution
,” in
The 5th International Conference on Research and Education in Mathematics
,
2012
, vol.
1450
, no. June, pp.
82
89
, doi: .
13.
Piotr
Kębłowski
and
A.
Welfe
, “
The ADF–KPSS test of the joint confirmation hypothesis of unit autoregressive root
,”
Econ. Lett.
, vol.
85
, no.
2
, pp.
257
263
,
2004
, doi: .
14.
D.
Kwiatkowski
,
P. C. B.
Phillips
,
P.
Schmidt
, and
Y.
Shin
, “
Testing the null hypothesis of stationarity against the alternative of a unit root
,”
J. Econom.
, vol.
54
, no.
1–3
, pp.
159
178
,
1992
, doi: .
15.
A.
Chowdhury
and
G.
Mavrotas
, “
FDI and growth: what causes what?
,”
World Econ.
, vol.
29
, pp.
9
19
,
2006
.
16.
N.
Dritsakis
, “
Tourism as a Long-Run Economic Growth Factor: An Empirical Investigation for Greece Using Causality Analysis, Tour
.,”
Econ.
, vol.
10
, pp.
305
316
,
2004
, doi: .
17.
R.
Sneyers
,
“On the Statistical Analysis of Series of Observations,”
Geneva
,
Switzerland
.,
1990
.
18.
A. G.
Yilmaz
and
B. J. C.
Perera
, “
Extreme Rainfall Nonstationarity Investigation and Intensity – Frequency – Duration Relationship
,”
J. Hydrol. Eng.
, vol.
19
, no.
6
, pp.
1160
1172
,
2014
, doi: .
19.
G.
Panthou
 et al., “
From pointwise testing to a regional vision: An integrated statistical approach to detect nonstationarity in extreme daily rainfall. Application to the Sahelian region
,”
J. Geophys. Res. Atmos.
, vol.
118
, no.
15
, pp.
8222
8237
,
2013
, doi: .
20.
S.
Jiang
and
L.
Kang
, “
Flood frequency analysis for annual maximum streamflow using a non-stationary GEV model
,”
E3S Web Conf.
, vol.
79
,
2019
, doi: .
21.
E. F.
Eastoe
and
J. A.
Tawn
, “
Modelling non-stationary extremes with application to surface level ozone
,”
J. R. Stat. Soc. Ser. C Appl. Stat.
, vol.
58
, no.
1
, pp.
25
45
,
2009
, doi: .
22.
P.
Jain
, R., &
Chetty
, “
What is a stationarity test and how to do it?
,”
2020
. https://www.projectguru.in/what-is-a-stationarity-test-how-to-do-it/ (accessed Jun. 22, 2021).
This content is only available via PDF.
You do not currently have access to this content.