Humans and robot's interaction is gradually increasing day by day in production environments and assembly operations etc. and robot's environments is not safe for humans. Soft robotic actuators have sought to improve human-machine interaction, or imitating the softness and flexibility. Many soft actuators are composed of soft fluidic actuators that are fabricated from hyper elastic materials i.e., silicon, rubber etc. and use hydraulic or pneumatic actuation. Due to presence of strong non-linearities and complex geometries in soft actuators 3D printing is the best additive manufacturing technique to fabricate the soft pneumatic actuator. Herein, the literature additively manufactured soft pneumatic actuators are reviewed. Finite element modeling provides an effective solution and allows us to predict performance and optimize soft actuators designs. First, the additive manufacturing methods for soft actuators will be discussed. Then, a comprehensive review of constitutive model parameters for the most widely used silicon rubbers in the article is provided. Through this article an attempt is made to highlight the modeling procedures, material properties and design guidelines by analyzing the available research work in this field.

1.
Zolfagharian
,
A.
,
Mahmud
,
M. P.
,
Gharaie
,
S.
,
Bodaghi
,
M.
,
Kouzani
,
A. Z.
, &
Kaynak
,
A.
(
2020
).
3D/4D-printed bending-type soft pneumatic actuators: fabrication, modelling, and control
.
Virtual and Physical Prototyping
,
15
(
4
),
373
402
.
2.
Schaffner
,
M.
,
Faber
,
J. A.
,
Pianegonda
,
L.
,
Rühs
,
P. A.
,
Coulter
,
F.
, &
Studart
,
A. R.
(
2018
).
3D printing of robotic soft actuators with programmable bioinspired architectures
.
Nature communications
,
9
(
1
),
1
9
.
3.
Xavier
,
M. S.
,
Fleming
,
A. J.
, &
Yong
,
Y. K.
(
2021
).
Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments
.
Advanced Intelligent Systems
,
3
(
2
),
2000187
.
4.
Sun
,
Y.
,
Song
,
Y. S.
, &
Paik
,
J.
(
2013
, November).
Characterization of silicone rubber based soft pneumatic actuators
. In
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
(pp.
4446
4453
). Ieee.
5.
Alici
,
G.
, &
Shirinzadeh
,
B.
(
2005
).
Enhanced stiffness modeling, identification and characterization for robot manipulators
.
IEEE transactions on robotics
,
21
(
4
),
554
564
.
6.
Shuichi
Wakimoto
,
Koichi
Suzumori
&
Keiko
Ogura
(
2011
)
Miniature Pneumatic Curling Rubber Actuator Generating Bidirectional Motion with One Air-Supply Tube
,
Advanced Robotics
,
25
:
9-10
,
1311
1330
, DOI:
7.
Hwang
,
Y.
,
Paydar
,
O. H.
, &
Candler
,
R. N.
(
2015
).
Pneumatic microfinger with balloon fins for linear motion using 3D printed molds
.
Sensors and Actuators A: Physical
,
234
,
65
71
.
8.
Agarwal
,
G.
,
Besuchet
,
N.
,
Audergon
,
B.
 et al. 
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
.
Sci Rep
6
,
34224
(
2016
).
9.
Alici
,
G.
,
Canty
,
T.
,
Mutlu
,
R.
,
Hu
,
W.
, &
Sencadas
,
V.
(
2018
).
Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers
.
Soft robotics
,
5
(
1
),
24
35
.
10.
Batsuren
,
K.
, &
Yun
,
D.
(
2019
).
Soft robotic gripper with chambered fingers for performing in-hand manipulation
.
Applied Sciences
,
9
(
15
),
2967
.
11.
Gorissen
,
Benjamin
,
Dominiek
Reynaerts
,
Satoshi
Konishi
,
Kazuhiro
Yoshida
,
Joon Wan
Kim
, and
Michael
De Volder
. “
Elastic inflatable actuators for soft robotic applications
.”
Advanced Materials
29
, no.
43
(
2017
):
1604977
.
12.
P.
Polygerinos
 et al., “
Towards a soft pneumatic glove for hand rehabilitation
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
2013
, pp.
1512
1517
, doi: .
13.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
, … &
Whitesides
,
G. M.
(
2014
).
Pneumatic networks for soft robotics that actuate rapidly
.
Advanced functional materials
,
24
(
15
),
2163
2170
.
14.
Benjamin
Gorissen
,
Wannes
Vincentie
,
Farid
Al-Bender
,
Dominiek
Reynaerts
,
Michaël
De Volder
Modeling and bonding-free fabrication of flexible fluidic microactuators with a bending motion
Journal of Micromechanics and Microengineering
2013
/2/28 vol.
23
issue
4
15.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
, … &
Whitesides
,
G. M.
(
2014
).
A resilient, untethered soft robot
.
Soft robotics
,
1
(
3
),
213
223
.
16.
Plott
,
J.
, &
Shih
,
A.
(
2017
).
The extrusion-based additive manufacturing of moisture-cured silicone elastomer with minimal void for pneumatic actuators
.
Additive Manufacturing
,
17
,
1
14
.
17.
Morrow
,
J.
,
Hemleben
,
S.
, &
Menguc
,
Y.
(
2016
).
Directly fabricating soft robotic actuators with an open-source 3-D printer
.
IEEE Robotics and Automation Letters
,
2
(
1
),
277
281
.
18.
Anver
,
H. M.
,
Mutlu
,
R.
, &
Alici
,
G.
(
2017
, July).
3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication
. In
2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM
) (pp.
442
447
). IEEE.
19.
Zhu
,
M.
,
Mori
,
Y.
,
Xie
,
M.
,
Wada
,
A.
, &
Kawamura
,
S.
(
2018
, September).
A 3D printed two DoF soft robotic finger with variable stiffness
.
In 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics
(pp.
387
391
). IEEE.
20.
Wang
,
Z.
,
Chathuranga
,
D. S.
, &
Hirai
,
S.
(
2016
, December).
3D printed soft gripper for automatic lunch box packing
.
In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO
) (pp.
503
508
). IEEE.
21.
Ge
,
L.
,
Dong
,
L.
,
Wang
,
D.
,
Ge
,
Q.
, &
Gu
,
G.
(
2018
).
A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators
.
Sensors and Actuators A: Physical
,
273
,
285
292
.
22.
Zhang
,
Y. F.
,
Zhang
,
N.
,
Hingorani
,
H.
,
Ding
,
N.
,
Wang
,
D.
,
Yuan
,
C.
, &
Ge
,
Q.
(
2019
).
Fast-response, stiffness- tunable soft actuator by hybrid multimaterial 3D printing
.
Advanced Functional Materials
,
29
(
15
),
1806698
.
23.
Patel
,
D. K.
,
Sakhaei
,
A. H.
,
Layani
,
M.
,
Zhang
,
B.
,
Ge
,
Q.
, &
Magdassi
,
S.
(
2017
).
Highly stretchable and UV curable elastomers for digital light processing-based 3D printing
.
Advanced Materials
,
29
(
15
),
1606000
.
24.
Connolly
,
F.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, &
Bertoldi
,
K.
(
2015
).
Mechanical programming of soft actuators by varying fiber angle
.
Soft Robotics
,
2
(
1
),
26
32
.
25.
Tawk
,
C.
,
Gao
,
Y.
,
Mutlu
,
R.
, &
Alici
,
G.
(
2019
, July).
Fully 3D printed monolithic soft gripper with high conformal grasping capability
.
In 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM
) (pp.
1139
1144
). IEEE.
26.
Drotman
,
D.
,
Ishida
,
M.
,
Jadhav
,
S.
, &
Tolley
,
M. T.
(
2018
).
Application-driven design of soft, 3-D printed, pneumatic actuators with bellows
.
IEEE/ASME Transactions on Mechatronics
,
24
(
1
),
78
87
.
27.
Yap
,
H. K.
,
Ng
,
H. Y.
, &
Yeow
,
C. H.
(
2016
).
High-force soft printable pneumatics for soft robotic applications
.
Soft Robotics
,
3
(
3
),
144
158
.
28.
Zhong
,
G.
,
Hou
,
Y.
, &
Dou
,
W.
(
2019
).
A soft pneumatic dexterous gripper with convertible grasping modes
.
International Journal of Mechanical Sciences
,
153
,
445
456
.
29.
Lau
,
H. F.
(
2019
).
3D-Printed Inflatable Actuators: Design and Development of Soft Actuators for a Pneumatically-Actuated Soft Robotic Arm
.
30.
Stano
,
G.
,
Arleo
,
L.
, &
Percoco
,
G.
(
2020
).
Additive Manufacturing for Soft Robotics: Design and Fabrication of Airtight, Monolithic Bending PneuNets with Embedded Air Connectors
.
Micromachines
,
11
(
5
),
485
.
31.
Hu
,
W.
,
Mutlu
,
R.
,
Li
,
W.
, &
Alici
,
G.
(
2018
).
A structural optimisation method for a soft pneumatic actuator
.
robotics
,
7
(
2
),
24
.
32.
Auysakul
,
J.
,
Vittayaphadung
,
N.
,
Gonsrang
,
S.
, &
Smithmaitrie
,
P.
(
2020
).
Bending Angle Effect of theCross-Section Ratio for a Soft Pneumatic Actuator
.
International Journal of Mechanical Engineering and Robotics Research
,
9
(
3
).
33.
Demir
,
K. G.
,
Zhang
,
Z.
,
Yang
,
J.
, &
Gu
,
G. X.
(
2020
).
Computational and Experimental Design Exploration of 3D-Printed Soft Pneumatic Actuators
.
Advanced Intelligent Systems
,
2
(
7
),
2000013
.
34.
Sun
,
Y.
,
Zhang
,
Q.
,
Chen
,
X.
, &
Chen
,
H.
(
2019
).
An Optimum Design Method of Pneu-Net Actuators for Trajectory Matching Utilizing a Bending Model and GA
.
Mathematical Problems in Engineering
, 2019.
35.
Moseley
,
P.
,
Florez
,
J. M.
,
Sonar
,
H. A.
,
Agarwal
,
G.
,
Curtin
,
W.
, &
Paik
,
J.
(
2016
).
Modeling, design, and development of soft pneumatic actuators with finite element method
.
Advanced engineering materials
,
18
(
6
),
978
988
.
36.
Marckmann
,
G.
, &
Verron
,
E.
(
2006
).
Comparison of hyperelastic models for rubber-like materials
.
Rubber chemistry and technology
,
79
(
5
),
835
858
.
37.
Martins
,
P. A. L. S.
,
Natal
Jorge
, R. M., &
Ferreira
,
A. J. M.
(
2006
).
A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues
.
Strain
,
42
(
3
),
135
147
.
38.
Mihai
,
L. A.
, &
Goriely
,
A.
(
2017
).
How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proceedings of the Royal Society A: Mathematical
,
Physical and Engineering Sciences
,
473
(
2207
),
20170607
.
39.
Ali
,
A.
,
Hosseini
,
M.
, &
Sahari
,
B. B.
(
2010
).
A review and comparison on some rubber elasticity models
.
This content is only available via PDF.
You do not currently have access to this content.