The quality of the weldment in gas tungsten arc welding (GTAW) process is attuned by varying discrete process parameters. The improved weldment can be obtained with optimum parameters. In this study, L9 Taguchi array constructed for performing welding trials on 1.6 mm thin sheets of stainless steel 316L (SS316L) with welding current (80-120 A), gas flow rate (5-15 L/min), arc length (3-5 mm), and welding speed (250-450 mm/min) as input parameters. The weld bead geometries (i.e. Depth of Penetration-DOP and Bead Width-BW) are measured for welding trials using welding expert system and software. Whereas, the weld bead profiles are simulated in COMSOL software and compared with the experimentally obtained profiles. The predicted bead profiles of simulation are in good agreement with the experimental results. Vlsekriterijumska Optimizacija I Kompromisno Resenje in Serbian (VIKOR) is utilized to identify the optimized GTAW process parameters set. Based on the VIKOR optimized Technique, the 7th welding trail (i.e. heat input- 134.4 J/mm) is selected as optimum process parameters. The butt joint configuration is conducted with optimum parameters. The quality of the butt joint is evaluated by analyzing its integrity and tensile properties. The butt joint configuration displayed 564 MPa weld strength with nominal elongation and showed absolute integrity without any cracks and fissures nucleation in the three-point bend test.

1.
Y.
Zhong
,
L.E.
Rännar
,
L.
Liu
,
A.
Koptyug
,
S.
Wikman
,
J.
Olsen
and
Z.
Shen
,
J. Nucl. Mater,
486,
pp.
234
245
(
2017
).
2.
D.
Singh
,
R.
Singh
,
K. S.
Boparai
,
I.
Farina
,
L.
Feo
and
A. K.
Verma
,
Compos. B. Eng
,
132
, pp.
107
114
(
2018
).
3.
B.
Dikici
,
I.
Ozdemir
and
M.
Topuz
Int. J. Chem. Mol. Nucls. Mater. Metall. Eng
10
(
4
), pp.
483
487
(
2016
).
4.
S.
Dwibedi
,
S.
Bag
,
D. K.
Lodhi
and
A
Kalita
, (
Springer, Singapore
,
2020
) pp.
569
578
.
5.
Ghidode
and
N.K.
Jain
, “
Investigations on autogeneous joining of thin sheets of dissimilar materials by micro-plasma transferred arc process
Doctoral dissertation, Discipline of Mechanical Engineering, IIT Indore
,
2018
.
6.
Karpagaraj
,
N. Siva
Shanmugam
and
K.
Sankaranarayanasamy
,
Mater. Sci. Eng. A
,
640
pp.
180
189
(
2015
).
7.
R.
Addamani
,
H.R.
Gurupavan
,
H.V.
Ravindra
and
G.
Ugrasen
,
IOP Conf. Ser.: Mater. Sci. Eng
.
376-1
, p.
012119
(
2018
)
8.
V.
Harinadh
,
G.
Edison
,
S.
Akella
,
L.S.
Reddy
and
R.K.
Buddu
Mater. Today,
4(
2)
, pp.
1452
1458
(
2017
).
9.
S.
Sharma
,
R.V
Taiwade
,
H.
Vashishthan
and
S.
Mukherjee
,
Mater. Res. Express,
6-1
, pp.
016532
(
2018
).
10.
Karpagaraj
,
K.
Parthiban
and
S.
Ponmani
,
Mater. Today Proceedings, v27,
pp.
2187
2190
(
2019
).
11.
R.
Pamnani
,
M.
Vasudevan
,
P.
Vasantharaja
and
T.
Jayakumar
,
Proc. Inst. Mech. Eng.,
231(
3)
pp.
320
331
(
2017
).
12.
K. R.
Ramkumar
and
S
Natarajan
,
Mater. Manuf. Process.
34(
3),
pp.
293
302
(
2019
)
13.
X.
Zhang
,
G.
Mi
,
L.
Chen
,
P.
Jiang
,
X.
Shao
and
C.
Wang
,
J. Mater. Process. Technol,
259,
pp.
312
319
(
2018
).
14.
Y.
Feng
,
Z.
Luo
,
Z.
Liu
,
Y.
Li
,
Y.
Luo
and
Y.
Huang
,
Mater. Des,
85,
pp.
24
31
(
2015
).
15.
T.
Hoang
,
V. V.
Le
,
A. X.
Nguyen
and
D. N.
Nguyen
,
J. Adv. Manuf. Technol.
12-2
, pp.
25
40
(
2018
).
16.
W.
Qiang
and
K.
Wang
,
J. Mater. Process. Technol,
250,
pp.
169
181
(
2017
).
17.
S.
Tathgir
and
A.
Bhattacharya
,
Mater. Manuf. Process
,
31-3,
pp.
335
342
(
2016
).
18.
R. V.
Rao
,
Mater. Des
,
29-10
,
1949
1954
(
2008
).
19.
A. P.
Aravind
,
J. S.
Kurmi
,
P. M.
Swamy
,
S. R.
Kumar
,
S.
Rajak
and
T. D. B.
Kannan
,
Mater. Today.
45
, pp.
592
-
596
(
2021
).
20.
R. M.
Samson
,
S.
Rajak
,
T. D. B.
Kannan
and
K. R.
Sampreet
,
J. Ins. Engg. C
, pp.
1
7
(
2020
).
21.
A.
Karpagaraj
,
N. S
Shanmugam
and
K.
Sankaranarayanasamy
,
Int. J. Adv. Manuf. Syst.,
101
, pp.
2933
2945
(
2019
).
22.
L. L.
Wang
,
J. H.
Wei
and
Z. M.
Wang
,
Int. J. Adv. Manuf. Syst
.,
95(
5-8)
, pp.
2421
2428
(
2018
).
23.
W.
Xu
and
X.
Sun
,
Sci. Technol. Weld. Join.
21
(
7)
, pp.
592
599
(
2016
).
24.
A. A.
Deshpande
,
D. W. J.
Tanner
,
W.
Sun
,
T. H.
Hyde
and
G. Mc
Cartney
,
Proc. Inst. Mech. Eng. Pt. L.J. Mater. Des. Appl.
225-1
, pp.
1
10
(
2011
).
25.
J. H.
Chujutalli
,
M. I.
Lourenço
and
S. F.
Estefen
,
J Mar Syst,
pp.
1
14
(
2020
).
26.
D.
Deng
and
S.
Kiyoshima
,
Nucl. Eng. Des.,
240-4
, pp.
688
696
(
2010
).
27.
K. S.
Kumar
,
Mater. Today
,
2,4-5
, pp.
2256
2266
(
2015
).
28.
K. D.
Ramkumar
,
A.
Bajpai
,
S.
Raghuvanshi
,
A.
Singh
,
A.
Chandrasekhar
,
M.
Arivarasu
and
N.
Arivazhagan
,
Mater. Sci. Eng. A
,
638,
pp.
60
68
(
2015
).
29.
E.
Mortazavi
,
R. A.
Najafabadi
and
A.
Meysami
,
J. Iron Steel Res. Int.,
24-12
, pp.
1248
1253
(
2017
).
30.
R.
Neissi
,
M.
Shamanian
and
M.
Hajihashemi
,
J. Mater. Eng. Perform
,
25-5
, pp.
2017
2028
(
2016
).
31.
J. Anthuvan Stephen
Edberk
and
N. Siva
Shanmugam
,
Mater. Res. Express.
6-4
, pp.
1
25
(
2019
).
32.
A
Karpagaraj
A, N
Abhilash
,
B
Siva
Shanmugam
,
S
Suresha
,
Arungalai Vendan
Studies on Spring Back Effect of TIG Welded Ti-6Al-4V Sheets, Simulations for Design and Manufacturing
”,
(Springer, Singapore.
,
2018
) Sequence no 5:
147
171
.
This content is only available via PDF.
You do not currently have access to this content.