Traditionally, natural preservatives are added to the palm saps to avoid spontaneous fermentation. Three selected plants have been used, namely chengal wood chips (Neobalanocarpus heimii), mangosteen rind (Garcinia mangostana Linn.), and guava leaves (Psidium guajava Linn.). The present study aims to estimate the total yield of potential natural preservatives extracted using different solvents and investigate their antimicrobial activity. Chengal wood chips, mangosteen rind, and guava leaves were extracted with methanol, ethanol, and water by the hot maceration technique. The total yield for each extract (methanol, ethanol, and water) of chengal wood chips is 17.5 %, 14.04 %, and 16.46 %, respectively. The total yield for methanol, ethanol, and water extracts of mangosteen rinds is 22.58 %, 17.76 %, and 20.10 %, respectively. Besides, the total yield for methanol, ethanol, and water extracts of guava leaves are 16.64 %, 15.20 %, and 16.12%, respectively. The result has indicated that the best solvent to obtain the highest yield of extracts is the methanol solvent. Antimicrobial test of the potential natural preservatives was performed against Escherichia coli, Streptococcus aureus, and Candida albicans. Based on the results, none of the chengal and guava extracts can inhibit E. coli growth with 100 mg/mL concentration. Only mangosteen rind water extract can inhibit the E. coli growth with a 12.0±2 mm inhibition zone. For S. aureus inhibition, chengal wood chips extracts (methanol; 17±1.00 mm; ethanol, 17±0.00 mm; water, 17.33±0.58 mm) give the best inhibition zone slight difference between the solvents. The result for S. aureus inhibition is followed by mangosteen rind extracts (methanol, 11.79±0.29 mm; ethanol, 10.5±0.50 mm; water; 11±1.00 mm) and guava leaves extract (methanol, 12±0 mm; ethanol, 11.33±0.58 mm; water, 10±0 mm). For C. albicans inhibition, none of the extracts has shown antimicrobial activity. In conclusion, the results have indicated that different extracts have had different antimicrobial activity against the selected microbes due to the different active compounds in the extracts.

1.
D.
Bergs
,
J.
Merz
,
A.
Delp
,
M.
Joehnck
,
G.
Martin
and
G.
Schembecker
,
Chem. Eng. Technol.
36
,
1739
1748
(
2013
).
2.
G.
Gituma
and
L.
Njue
,
Asian Food Sci. J.
10
(
4
),
1
7
(
2019
).
3.
K.
Chandrasekhar
,
S.
Sreevani
,
P.
Seshapani
and
J.
Pramodhakumari
,
Int. J. Research in Biol. Sci.
2
(
1
),
33
38
(
2012
).
4.
W.
Amoa-Awua
,
E.
Sampson
and
K.
Tano-Debrah
,
J. Appl. Microbiol.
102
(
2
),
599
606
(
2007
).
5.
N. H.
Saidan
,
M. A. A.
Kartayasa
,
N. I. A. M.
Lokman
,
N. F. Ab
Llah
,
M. M.
Nor
,
S. I.
Mokhtar
,
K. A. K. P.
Zaman
,
N. M.
Sidek
and
M. S. R.
Hamil
,
IOP Conf. Series: Earth and Environmental Science
549
,
012073
(
2020
).
6.
University of Calgary, Faculty of Science, Department of Chemistry
, http://www.chem.ucalgary.ca/courses/351/laboratory/rotavap.pdf.
7.
A. W.
Bauer
,
D. M.
Perry
and
W. M.
Kirby
,
AMA Arch. Intern. Med.
104
(
2
),
208
216
(
1959
).
8.
Q. D.
Do
,
A. E.
Angkawijaya
,
P. L.
Tran-Nguyen
,
L. H.
Huynh
,
F. E.
Soetaredjo
,
S.
Ismadji
and
Y.-H.
Ju
,
J. Food Drug Anal.
22
(
3
),
296
302
(
2014
).
9.
H.
Zielinski
and
H.
Kozlowska
,
J. Agric. Food Chem.
48
(
6
),
2008
2016
(
2000
).
10.
M. A.
Minhas
,
A.
Begum
,
S.
Hamid
,
M.
Babar
,
R.
Ilyas
,
S.
Ali
and
S.
Andleeb
,
Pak. J. Zool.
48
(
5
),
1381
1388
(
2016
).
11.
R.
Kadir
,
N. M.
Ali
,
Z.
Soit
and
Z.
Khamaruddin
,
Holzforschung
68
(
6
),
713
720
(
2014
).
12.
J. S.
Soetikno
,
R.
Handayani
and
R. D.
Rahayu
,
J. Innov. Pharm. Biol. Sci.
3
(
1
),
54
60
(
2016
).
13.
W.
Satong-Aun
,
R.
Assawarachan
and
A.
Noomhorm
,
J. Food Sci. Eng.
1
(
2
),
85
(
2011
).
14.
B.
Biswas
,
K.
Rogers
,
F.
McLaughlin
,
D.
Daniels
and
A.
Yadav
,
Int. J. Microbiol.
2013
,
746165
(
2013
).
15.
M. N.
Mailoa
,
M.
Mahendradatta
,
A.
Laga
,
N.
Djide
,
Int. J. Sci. Tech. Res.
3
(
1
),
236
241
(
2014
).
16.
S.
Jindarat
,
J. Med. Assoc. Thai.
97
Suppl 2
,
S196
201
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.