COVID-19 is acknowledged as a transmitted from one person to another through contact, coughing, and sneezing. Twitter has served as one of the media outlets to raise awareness regarding COVID-19 problems. One of the government's objectives, based on the rising distribution, is pursued to preserve immunizations in stock. Hence, the vaccine information has become adequately available. However, immunization has sparked a range of reactions, including support and objection for vaccination. Attempts require a mechanism to distinguish tweets addressing immunization-related information. One notable method includes sentiment analysis, expressing a statement's negative, neutral, and positive feelings. A total of 5200 datasets were employed, with 4000 datasets classified as neutral, 300 datasets as negative, and 900 datasets as positive. The Naïve Bayes method and the TF-IDF (Term Frequency – Inverse Document Frequency) word weighting strategy are proposed to model the COVID-19 vaccine dataset, by comparing the three models of: Gaussian, Multinomial, and TF-IDF (Term Frequency – Inverse Document Frequency). According to study employing Naïve Bayes, the best model employing Bernoulli Naive Bayes is 80% with a data splitting of 30%.

 

1.
F. F.
Rachman
and
S.
Pramana
, “
Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter
,”
Health Information Management Journal ISSN
,
8
,
2655
9129
(
2020
).
2.
S.
Suryono
,
E.
Utami
, and
E. T.
Luthfi
, “
Analisis Sentiment Pada Twitter Dengan Menggunakan Metode Naïve Bayes Classifier
,”
Seminar Nasional Geotik 2018
,
9
15
(
2018
).
3.
B.
Laurensz
and
Eko
Sediyono
, “
Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19
,”
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
,
10
,
118
123
(
2021
),
4.
V. K. S.
Que
,
A.
Iriani
, and
H. D.
Purnomo
, “
Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization
,”
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
,
9
,
162
170
(
2020
),
5.
M.
Syarifuddin
, “
Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn
,”
Inti Nusa Mandiri
,
15
,
23
28
(
2020
).
6.
C. R.
Aydın
,
T.
Güngör
, and
A.
Erkan
, “
Generating Word and Document Embeddings for Sentiment Analysis
,” in
Proceedings for CICLing 2019
, no page (
2020
).
7.
A. F.
Anees
,
A.
Shaikh
,
A.
Shaikh
, and
S.
Shaikh
, “
Survey Paper on Sentiment Analysis : Techniques and Challenges
,”
EasyChair
,
2516
2314
(
2020
).
8.
R. P.
Mehta
,
M. A.
Sanghvi
,
D. K.
Shah
, and
A.
Singh
, “
Sentiment analysis of tweets using supervised learning algorithms
,” in
Advances in Intelligent Systems and Computing
,
1045
,
323
338
(
2020
).
9.
D. S.
Sisodia
,
S.
Bhandari
,
N. K.
Reddy
, and
A.
Pujahari
, “A Comparative Performance Study of Machine Learning Algorithms for Sentiment Analysis of Movie Viewers Using Open Reviews,”
Springer
,
107
117
(
2020
).
10.
M. M.
Hassan
,
A.
Gumaei
,
A.
Alsanad
,
M.
Alrubaian
, and
G.
Fortino
, “
A hybrid deep learning model for efficient intrusion detection in big data environment
,”
Information Sciences
,
513
,
386
396
(2020),
11.
M. M.
Hassan
,
A.
Gumaei
,
S.
Huda
, and
A.
Almogren
, “
Increasing the Trustworthiness in the Industrial IoT Networks Through a Reliable Cyberattack Detection Model
,”
IEEE Transactions on Industrial Informatics
,
16
,
6154
6162
(
2020
),
12.
M.
Alqahtani
,
A.
Gumaei
,
H.
Mathkour
, and
M. M.
Ben Ismail
, “
A genetic-based extreme gradient boosting model for detecting intrusions in wireless sensor networks
,”
Sensors (Switzerland)
,
19
, (
2019
),
13.
A.
Gumaei
,
M. M.
Hassan
,
M. R.
Hassan
,
A.
Alelaiwi
, and
G.
Fortino
, “
A Hybrid Feature Extraction Method With Regularized Extreme Learning Machine for Brain Tumor Classification
,”
IEEE Access
,
7
,
36266
36273
(
2019
),
14.
A.
Gumaei
,
M. M.
Hassan
,
A.
Alelaiwi
, and
H.
Alsalman
, “
A Hybrid Deep Learning Model for Human Activity Recognition Using Multimodal Body Sensing Data
,”
IEEE Access
,
7
,
99152
99160
(
2019
),
15.
A.
Gumaei
,
R.
Sammouda
,
A. M. S.
Al-Salman
, and
A.
Alsanad
, “
An Improved Multispectral Palmprint Recognition System Using Autoencoder with Regularized Extreme Learning Machine
,”
Computational Intelligence and Neuroscience
,
2018
, (
2018
),
16.
A.
Gumaei
,
R.
Sammouda
,
A. M. S.
Al-Salman
, and
A.
Alsanad
, “
Anti-spoofing cloud-based multi-spectral biometric identification system for enterprise security and privacy-preservation
,”
Journal of Parallel and Distributed Computing
,
124
,
27
40
(
2019
),
17.
A.
Gumaei
,
R.
Sammouda
,
A.
Al-Salman
, and
A.
Alsanad
, “
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images
,”
Sensors
,
18
,
1575
(
2018
),
18.
A.
Pak
and
P.
Paroubek
, “
Twitter as a corpus for sentiment analysis and opinion mining
,”
Proceedings of the 7th International Conference on Language Resources and Evaluation, LREC 2010
,
1320
1326
(
2010
),
19.
R. I.
Permatasari
and
M. A.
Fauzi
, “
Twitter Sentiment Analysis of Movie Reviews using Ensemble Features Based Naïve Bayes
,”
2018 International Conference on Sustainable Information Engineering and Technology (SIET)
,
92
95
(
2018
).
20.
Imamah
and
F. H.
Rachman
, “
Twitter sentiment analysis of Covid-19 using term weighting TF-IDF and logistic regresion
,”
Proceeding -6th Information Technology International Seminar, ITIS 2020
,
238
242
(
2020
),
21.
D. A.
Nurdeni
,
I.
Budi
, and
A. B.
Santoso
, “
Sentiment Analysis on Covid19 Vaccines in Indonesia: From the Perspective of Sinovac and Pfizer
,”
3rd 2021 East Indonesia Conference on Computer and Information Technology, EIConCIT 2021
,
122
127
(
2021
),
22.
M.
Wongkar
and
A.
Angdresey
, “
Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler: Twitter
,”
Proceedings of 2019 4th International Conference on Informatics and Computing, ICIC 2019
,
1
5
(
2019
),
23.
S.
Ernawati
, “
Implementation of The Naïve Bayes Algorithm with Feature Selection using Genetic Algorithm for Sentiment Review Analysis of Fashion Online Companies
,”
2018 6th International Conference on Cyber and IT Service Management (CITSM)
,
1
5
(
2018
),
24.
M.
Lestandy
,
L.
Syafa
, and
A.
Faruq
, “
Klasifikasi Pendonor Darah Potensial Menggunakan Pendekatan K-Nearest Neighbors dan Naïve Bayes Classification of Potential Blood Donors Using K-Nearest Neighbors and Naïve Bayes Approach
,”
2
7
,
25.
V. L.
Nguyen
,
D.
Kim
,
V. P.
Ho
, and
Y.
Lim
, “
A new recognition method for visualizing music emotion
,”
International Journal of Electrical and Computer Engineering
,
7
,
1246
1254
(
2017
),
26.
Z.
Zhang
,
Q.
Ye
,
Z.
Zhang
, and
Y.
Li
, “
Sentiment classification of Internet restaurant reviews written in Cantonese
,”
Expert Systems with Applications
,
38
,
7674
7682
(
2011
),
27.
E. W. Sandi Fajar
Rodiyansyah
, “
Klasifikasi Posting Twitter Kemacetan Lalu Lintas Kota Bandung Menggunakan Naive Bayesian Classification
,”
Indonesian Journal of Computing and Cybernetics Systems
,
2
,
3
33
(
2010
),
This content is only available via PDF.
You do not currently have access to this content.