The maximum power of a PV module varies due to changing temperature, solar radiation, and load. To maximize efficiency, PV systems use a maximum power point tracker (MPPT) to constantly extract the highest power that can be produced by a solar panel and then deliver it to the load. The MPPT finds and maintains operations at the maximum power point using a tracking algorithm during variations in weather conditions. to design and implement a maximum power point tracker that uses a fuzzy logic control algorithm. Because of the nonlinear behaviour of PV module current-voltage characteristics and the nonlinearity of DC-DC converters due to switching, conventional controllers are unable to provide the best response, especially when dealing with wide parameter variations and line transients. Fuzzy logic naturally provides a superior controller for this type of nonlinear application. An integrated model of the PV module with the Boost Converter is simulated in MATLAB to obtain the expertise required for the formulation and development of the fuzzy logic controller.

1.
Jancarle L.
Dos Santos
,
Fernando L. M.
Antunes
and
Anis
Chehab
, “
A Maximum Power Point Tracker for PV Systems Using a High Performance Boost Converter
”,
Solar Energy
, Issue
7
, Vol.
80
, pp.
772
778
,
2005
.
2.
Ting-Chung
Yu
and
Tang-Shiuan
Chien
, “
Analysis and Simulation of Characteristics and Maximum Power Point Tracking for Photovoltaic Systems
”,
Proceedings of Power Electronics and Drive Systems Conference
, pp.
1339
1344
,
Taipei
,
2009
.
3.
Roberto
Faranda
,
Sonia
Leva
, “
Energy Comparison of MPPT techniques for PV Systems
”,
Wseas Transctions on Power System
, Issue
6
, Vol.
3
, pp.
446
455
, June
2008
.
4.
D. P.
Hohm
and
M. E.
Ropp
, “
Comparative Study of Maximum Power Point Tracking Algorithms using an experimental, programmable, maximum power point tracking test bed
”,
Proceedings of Photovoltaic Specialists Conference
, pp.
1699
1702
,
USA
,
2000
.
5.
Trishan
Esram
and
Patrick L.
Chapman
, “
Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques
”,
Energy Conver Sion
, Issue
2
, Vol.
22
, pp.
439
449
, May
2007
.
6.
V.
Salas
,
E.
Olias
,
A.
Barrado
,
A.
Lazaro
, “
Review of the Maximum Power Point Tracking Algorithms for Stand-alone Photo voltaic Systems
”,
Solar Energy Materials and Solar Cells
, Issue
11
, Vol.
90
, pp.
1555
1578
, July
2008
7.
Kondawar
,
Sangita S.
, and
U. B.
Vaidya
. “
A comparison of two MPPT techniques for pv system in Matlab simulink
.”
International Journal of Engineering Research and Development
2
.
7
(
2012
):
73
79
.
8.
Orozco
,
MI Arteaga
, et al. “
Maximum power point tracker of a photovoltaic system using sliding mode control
.”
International Conference on Renewable Energies and Power Quality.
2009
.
9.
Chouder
,
A.
,
F.
Guijoan
, and
S.
Silvestre
. “
Simulation of fuzzy-based MPP tracker andperformance comparison with perturb & observe method
.”
Revue des Energies Renouvelables
11
.
4
(
2008
):
577
586
.
10.
Takun
,
Pongsakor
,
Somyot
Kaitwanidvilai
, and
Chaiyan
Jettanasen
. “
Maximum power point tracking using fuzzy logic control for photovoltaic systems
.”
Proceedings of International MultiConference of Engineers and Computer Scientists. Hongkong.
2011
.
11.
Cheikh
,
MS Aït
, et al. “
Maximum power point tracking using a fuzzy logic control scheme
.”
Revue des energies Renouvelables
10
.
3
(
2007
):
387
395
.
12.
Cholapandian
,
V.
,
Yuvaraj
,
T.
, &
Devabalaji
,
K.
(
2021
).
Optimal allocation of capacitor banks in distribution networks using cuckoo search algorithm
.
2021 7th International Conference on Electrical Energy Systems (ICEES).
13.
Devabalaji
,
K.
,
Imran
,
A. M.
,
Yuvaraj
,
T.
, &
Ravi
,
K.
(
2015
).
Power loss minimization in radial distribution system
.
Energy Procedia
,
79
,
917
923
.
14.
Devabalaji
,
K.
,
Ravi
,
K.
, &
Kothari
,
D.
(
2015
).
Optimal location and sizing of capacitor placement in radial distribution system using bacterial foraging optimization algorithm
.
International Journal of Electrical Power & Energy Systems
,
71
,
383
390
.
15.
Devabalaji
,
K.
, &
Ravi
,
K.
(
2016
).
Optimal size and siting of multiple DG and DSTATCOM in radial distribution system using bacterial foraging optimization algorithm
.
Ain Shams Engineering Journal
,
7
(
3
),
959
971
.
16.
Devabalaji
,
K.
,
Yuvaraj
,
T.
, &
Ravi
,
K.
(
2018
).
An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm
.
Ain Shams Engineering Journal
,
9
(
4
),
589
597
.
17.
Kaliaperumal Rukmani
,
D.
,
Thangaraj
,
Y.
,
Subramaniam
,
U.
,
Ramachandran
,
S.
,
Madurai Elavarasan
,
R.
,
Das
,
N.
,
Baringo
,
L.
, &
Imran Abdul Rasheed
,
M.
(
2020
).
A new approach to optimal location and sizing of DSTATCOM in radial distribution networks using bio-inspired cuckoo search algorithm
.
Energies
,
13
(
18
),
4615
.
18.
Pal
,
P.
,
Parvathy
,
A. K.
,
Devabalaji
,
K. R.
,
Antony
,
S. J.
,
Ocheme
,
S.
,
Babu
,
T. S.
,
Alhelou
,
H. H.
, &
Yuvaraj
,
T.
(
2021
).
IoT-based real time energy management of virtual power plant using PLC for Transactive energy framework
.
IEEE Access
,
9
,
97643
97660
.
19.
R., S., C. K., S., K. R., D.,
Nataraj
,
S. K.
, & M., K. (
2018
).
Improved fault ride through capability of DFIG-wind turbines using customized dynamic voltage restorer
.
Sustainable Cities and Society
,
39
,
114
125
.
20.
Sitharthan
,
R.
,
Devabalaji
,
K.
, &
Jees
,
A.
(
2017
).
An Levenberg–Marquardt trained feed-forward back-propagation based intelligent pitch angle controller for wind generation system
.
Renewable Energy Focus
,
22-23
,
24
32
.
21.
Sitharthan
,
R.
,
Sundarabalan
,
C.
,
Devabalaji
,
K.
,
Yuvaraj
,
T.
, &
Mohamed Imran
,
A.
(
2019
).
Automated power management strategy for wind power generation system using pitch angle controller
.
Measurement and Control
,
52
(
3-4
),
169
182
.
22.
Yuvaraj
,
T.
,
Devabalaji
,
K.
, &
Ravi
,
K.
(
2015
).
Optimal placement and sizing of DSTATCOM using harmony search algorithm
.
Energy Procedia
,
79
,
759
765
.
23.
Yuvaraj
,
T.
,
Devabalaji
,
K.
,
Srinivasan
,
S.
,
Prabaharan
,
N.
,
Hariharan
,
R.
,
Haes Alhelou
,
H.
, &
Ashokkumar
,
B.
(
2021
).
Comparative analysis of various compensating devices in energy trading radial distribution system for voltage regulation and loss mitigation using blockchain technology and bat algorithm
.
Energy Reports.
24.
Yuvaraj
,
T.
,
Devabalaji
,
K. R.
, &
Ravi
,
K.
(
2017
).
Optimal allocation of DG in the radial distribution network using bat optimization algorithm
.
Advances in Power Systems and Energy Management
,
563
569
.
25.
Yuvaraj
,
T.
,
Devabalaji
,
K. R.
, &
Thanikanti
,
S. B.
(
2019
).
Simultaneous allocation of DG and DSTATCOM using whale optimization algorithm
.
Iranian Journal of Science and Technology, Transactions of Electrical Engineering
,
44
(
2
),
879
896
.
26.
Yuvaraj
,
T.
,
Ravi
,
K.
, &
Devabalaji
,
K.
(
2017
).
Dstatcom allocation in distribution networks considering load variations using bat algorithm
.
Ain Shams Engineering Journal
,
8
(
3
),
391
403
.
27.
Yuvaraj
,
T.
,
Ravi
,
K.
, &
Devabalaji
,
K. R.
(
2017
).
Optimal allocation of DG and DSTATCOM in radial distribution system using cuckoo search optimization algorithm
.
Modelling and Simulation in Engineering
,
2017
,
1
11
.
28.
Yuvaraj
,
T.
,
Ravi
,
K.
, &
Devabalaji
,
K.
(
2017
).
Dstatcom allocation in distribution networks considering load variations using bat algorithm
.
Ain Shams Engineering Journal
,
8
(
3
),
391
403
.
This content is only available via PDF.
You do not currently have access to this content.