In this work, the zeolitic imidazolate framework (ZIF-67) has been synthesized as an efficient adsorber for dibenzothiophene (DBT) removal from liquid model fuel via the adsorptive desulfurization method. Different characterizations were applied to assess the properties of the synthesized ZIF-67 adsorber. The effects of experimental parameters, DBT concentration in model fuel, and contact time have been investigated on the absorption performance of ZIF-67. The synthesized ZIF-67 presented a high surface area (1159.9 m2.g-1). Also, the ZIF-67 exhibited good DBT absorption uptake (86.12 mg.g-1). Moreover, the kinetics and equilibrium isotherm of DBT removal was considered. The pseudo-second-order kinetic model and the Freundlich isotherm exhibited well agreement with the experimental data.

1.
H.
Zeng
, X.,
Xiao
,
X.
,
Li
,
Y.
,
Chen
,
J.
, and Wang,
“Applied Catal. B, Environ.
, vol.
209
, pp.
98
109
,
2017
.
2.
S. A.
Hosseini
,
V.
Majidi
, and
A. R.
Abbasian
,
J. Sulfur Chem.
, vol.
39
, no.
2
, pp.
119
129
, 2018.
3.
Z.
Shang
, H.,
Zhang
,
H.
,
Du
,
W.
, and Liu,
Journal of Industrial and Engineering Chemistry.
pp.
1426
1432
,
2013
.
4.
X.
Zeng
,
X.
Xiao
,
Y.
Li
,
J.
Chen
, and
H.
Wang
,
Appl. Catal. B Environ.
, vol.
209
, pp.
98
109
,
2017
.
5.
Y.
Liu
,
P.
Zuo
,
F.
Wang
,
Y.
Lv
,
R.
Wang
, and
W.
Jiao
,
J. Taiwan Inst. Chem. Eng.
,
2020
.
6.
S.
Mgidlana
and
T.
Nyokong
,
Inorganica Chim. Acta
, vol.
514
, Jan.
2021
.
7.
J.
Ye
 et al.,
Chinese Chem. Lett.
, vol.
31
, no.
10
, pp.
2819
2824
, Oct.
2020
.
8.
X. N.
Pham
,
M. B.
Nguyen
,
H. S.
Ngo
, and
H. V.
Doan
,
J. Ind. Eng. Chem.
, vol.
90
, pp.
358
370
, Oct.
2020
.
9.
M.
Kang
 et al.,
J. Environ. Chem. Eng.
, vol.
7
, no.
1
, Feb.
2019
.
10.
X.
Guan
,
Y.
Wang
, and
W.
Cai
,
Chinese Chem. Lett.
, vol.
30
, no.
6
, pp.
1310
1314
, Jun. 2019.
11.
S.
Mandizadeh
,
M.
Salavati-Niasari
, and
M.
Sadri
,
Sep. Purif. Technol.
, vol.
175
, pp.
399
405
, Mar.
2017
.
12.
X.
Lu
,
X.
Li
,
F.
Chen
,
Z.
Chen
,
J.
Qian
, and
Q.
Zhang
,
”J. Alloys Compd.
, vol.
815
, Jan.
2020
.
13.
E.
Rojas-García
,
J. M.
Barrera-Andrade
,
E.
Albiter
,
A. M.
Maubert
, and
M. A.
Valenzuela
,
Appl. Met. Fram. Their Deriv. Mater.
, pp.
377
461
,
2020
.
14.
N. K.
Demir
,
B.
Topuz
,
L.
Yilmaz
, and
H.
Kalipcilar
,
Microporous mesoporous Mater.
, vol.
198
, pp.
291
300
,
2014
.
15.
J.
Qian
,
F.
Sun
, and
L.
Qin
,
Mater. Lett.
, vol.
82
, no.
2012
, pp.
220
223
,
2020
.
16.
D. D.
Tuan
and
K. Y. A.
Lin
,
Chem. Eng. J.
, vol.
351
, no. June, pp.
48
55
,
2018
.
17.
T.
Truong
,
T. M.
Hoang
,
C. K.
Nguyen
,
Q. T. N.
Huynh
, and
N. T. S.
Phan
,
Rsc Adv.
, vol.
5
, no.
31
, pp.
24769
24776
,
2015
.
18.
A.
Gu
 et al.,
Appl. Surf. Sci.
, vol.
516
, p.
146160
,
2020
.
19.
R.
Kecili
and
C. M.
Hussain
, Elsevier, pp.
89
115
,
2018
.
20.
H. B.
Senturk
,
D.
Ozdes
,
A.
Gundogdu
,
C.
Duran
, and
M.
Soylak
,
J. Hazard. Mater.
, vol.
172
, no.
1
, pp.
353
362
,
2009
.
21.
A.
Behnamfard
and
M. M.
Salarirad
,
J. Hazard. Mater.
, vol.
170
, no.
1
, pp.
127
133
,
2009
.
22.
G.
Ghanizadeh
and
G.
Asgari
,
React. Kinet. Mech. Catal.
, vol.
102
, no.
1
, pp.
127
142
,
2011
.
23.
M.
Tuzen
,
A.
Sarı
,
D.
Mendil
,
O. D.
Uluozlu
,
M.
Soylak
, and
M.
Dogan
,
J. Hazard. Mater.
, vol.
165
, no.
1–3
, pp.
566
572
,
2009
.
This content is only available via PDF.
You do not currently have access to this content.