A growing tendency in the production and in the application of ready mixtures, fully composed of dry components is observed in the last years. Their use does not require mixing, homogenizing and preservation of their components separately, which makes easier their application in the so-called craft bakeries, as well as in home conditions in the preparation of bread, pastry and confectionery. The desorption capacity of a ready mixture of golden linseed - 46%; brown linseed - 25%; plum granules - 9% and date palm granules - 8% - biological farming ingredients is examined in the present research. The research is conducted in three temperatures 10°C, 25°C and 40°C and eight water activities in the range of 0.11 to 0.85. The achievement of equilibrium moisture content is followed, a mathematical analysis of the results is done and the monolayer moisture content (MMC) of the examined product is calculated through Brunauer-Emmett-Teller (BET) model linearization. The received results indicate dependences which are proved in the years, namely that the temperature increase in constant water activity, leads to the reduction of the equilibrium moisture content. The sorption isotherms are of the characteristic type III for nutrients according to the Brunauer et al classification. According to the common suitability criteria - average relative error, standard deviation and residues distribution, two three parametrical modified models are recommended for the desorption isotherms description, as the Chung-Pfost model is the first suitable model and the Henderson model is the second one. The MMC calculated values of the ready mixture for the three temperatures with experimental points for water activity aw < 0.5 are the following: 10°C - 4.37% d.m., 25°C - 3.54% d.m. and 40°C - 3.15% d.m.

1.
S. H.
Nile
and
S. W.
Park
,
Nutrition
30
(
2
), pp
134
144
(
2014
).
2.
M. N.
Shashirekha
,
S. E.
Mallikarjuna
and
S.
Rajarathnam
,
Crit. Rev. Food Sci. Nutr.
55
(
10
), pp
1324
1339
(
2015
).
3.
M.
Zuk
,
D.
Richter
,
J.
Matula
and
J.
Szopa
,
Ind Crops Prod.
75
, pp
165
177
(
2015
).
4.
H.
Chhillar
,
P.
Chopra
and
M. A.
Ashfaq
,
Crit. Rev. Food Sci. Nutr.
,
1
23
(
2020
).
5.
D. A.
Abid
,
N.
Mokhtari-soulimane
,
H.
Merzouk
and
M.
Narce
,
Int. j. pharm. pharm. sci.
8
(
3
), pp
194
200
(
2016
).
6.
N. M.
Shakuntala
,
M.
Kammar
,
S. N.
Vasudevan
,
S. A.
Biradar
and
S. A.
Rajeshwari
,
J Progress Res Soc Sci
11
(
8
), pp
5634
5638
(
2016
).
7.
B.
Kumar
and
R. N.
Kewat
,
J. Pharmacogn. Phytochem.
10
(
2
), pp
207
210
(
2021
).
8.
M.
Stacewicz-Sapuntzakis
,
Crit. Rev. Food Sci. Nutr.
53
(
12
), pp
1277
1302
(
2013
).
9.
F. A.
Tomás-Barberán
,
D.
Ruiz
,
D.
Valero
,
D.
Rivera
,
C.
Obón
,
C.
Sánchez-Roca
and
M.
Gil
,
Bioactives in fruit: Health benefits and functional foods, chapter
7
pp
125
167
(
2013
).
10.
J. F.
Dayang
,
C. R.
Reuben
and
F.
Raji
,
Int J Food Sci Nutr
3
(
6
),
63
(
2014
).
11.
M. D. W. I.
Saryono
and
E.
Rahmawati
,
IJRAMR
3
(
7
), pp
1630
1633
(
2016
).
12.
M. U.
Nasir
,
S.
Hussain
,
S.
Jabbar
,
F.
Rashid
,
N.
Khalid
and
A.
Mehmood
,
Sci. Lett
3
(
1
), pp
17
22
(
2015
).
13.
A. H.
Al-Muhtaseb
,
W. A. M.
McMinn
and
T. R. A.
Magee
,
Food Bioprod Process
80
(
2
), pp
118
128
(
2002
).
14.
S.
Furmaniak
,
A. P.
Terzyk
,
R.
Golembiewski
,
P. A.
Gauden
and
L.
Czepirski
,
Food Res. Int.
42
(
8
), pp
1203
1214
(
2009
).
15.
M.
Dupas-Langlet
,
J.
Dupas
,
S.
Samain
,
M. I.
Giardiello
,
V.
Meunier
and
L.
Forny
,
J. Food Eng.
184
, pp
53
62
(
2016
).
16.
K.
Muzaffar
and
P.
Kumar
,
Powder Technol
291
, pp
322
327
(
2016
).
17.
B.
Nurhadi
and
Y. H.
Roos
,
J. Food Eng.
210
, pp
76
82
(
2017
).
18.
T. W. Y.
Tham
,
C.
Wang
,
A. T. H.
Yeoh
and
W.
Zhou
,
J. Food Eng.
175
pp
117
126
(
2016
).
19.
R.
Kulchan
,
W.
Boonsupthip
and
P.
Suppakul
,
J. Food Eng.
100
(
3
), pp
461
467
(
2010
).
20.
P. B.
Staudt
,
I. C.
Tessaro
,
L. D. F.
Marczak
,
R. D. P.
Soares
and
N. S. M.
Cardozo
,
J. Food Eng.
118
(
3
), pp
247
255
(
2013
).
21.
E. O.
Timmermann
,
Colloid Surf A Physicochem Eng Asp
220
(
1-3
), pp
235
260
(
2003
).
22.
J.
Troller
,
Water activity and food
,
Elsevier
(
2012
).
23.
A. L.
Decagon
,
Decagon Devices
,
Pullman, WA Google Scholar
(
2011
)
24.
S.
Kaya
and
T.
Kahyaoglu
,
J. Food Eng.
71
(
2
), pp
200
207
(
2005
).
25.
W.
Wolf
,
W. E. L.
Spiess
and
G.
Jung
,
COST-Project 90 and 90 bis, Properties of Water in Foods in Relation to Quality and Stability Martinus Nijhoff
,
Dordrech
, pp
661
679
(
1985
).
26.
AOAC
,
Official Methods of Analysis 960.39
, 15th ed.,
Association of Official Analytical
Washington DC
(
1990
).
27.
C.
Igathinathane
,
A.
Womac
,
S.
Sokhansanj
and
L.
Pordesimo
,
Transactions of the ASAE
48
(
4
), pp
1449
1460
. (
2005
).
28.
L.
Zhang
,
D.-W.
Sun
and
Z.
Zhang
,
Crit Rev Food Sci Nutr
57
(
5
), pp
1052
1058
(
2017
).
29.
C.-C.
Chen
and
R. V.
Morey
,
Transactions of the ASAE
32
(
3
), pp
983
0990
(
1989
).
30.
C. J.
Lomauro
,
A. S.
Bakshi
and
T. P.
Labuza
,
LWT-Food Sci Technol
18
(
2
), pp
118
124
(
1985
).
31.
A.
Durakova
, In
E3S Web Conf.
,
EDP Sciences
180
, p
03008
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.