Random Number Generators (RNGs) have been used in several traditional fields such as simulation, gaming, cryptography, etc. Random numbers are used in cryptography to generate passwords. The strength of a password depends not just on its length and complexity but mainly on its unpredictability. Strong passwords lower the overall risk of a security breach. Hence, we propose a True Random Number Generation (TRNG) using images from a Complementary Metal Oxide Semiconductor (CMOS) image sensor to provide unpredictability to the passwords. The proposed system is based on the dark pixel values of the image from the CMOS image sensor. Dark pixels are used to eliminate the requirement of light. The Image Fusion Algorithm is used in this system to combine more image files into a single image file. The process of combining more image files into one image file increases unpredictability. The TRNG does not require any additional resources, such as a light source for providing true randomness. The images received from the CMOS image sensor are processed and dark pixel values are combined to produce the initial seed value. A pseudo-random number generator algorithm is used to enhance the randomness of the initial seed value. This TRNG mobile application can be used in any android mobile phone and this can also be used in any electronic device that has a CMOS image sensor with it. The effectiveness of the system can be analyzed by statistical analysis suite.

1.
Byung Kwon
Park
,
Hojoong
Park
,
Yong-Su
Kim
,
Ju-Sung
Kang
,
Yongjin
Yeom
,
Changhui
Ye
,
Sung
Moon
, and
Sangwook
Han
, (
2019
) ‘
Practical True Random Number Generator Using CMOS Image Sensor Dark Noise
’,
IEEE Access, VOLUME.
07
, pp.
91407
91413
.
2.
Biswajit
Ray
and
Aleksandar
Milenkovi¢
, (
2018
) ‘
True Random Number Generation Using Read Noise of Flash Memory Cells
’,
IEEE Trans. Electron Devices
, volume.
65
, issue no.
3
, pp.
963
969
.
3.
Jeremie S.
Kim
,
Minesh
Patel
,
Hasan
Hassan
,
Lois
Orosa
, and
Onur
Mutlu
, "
DRaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput
," in
proc. 25th IEEE Int. Symp. High Perf. Comput. Arch. (HPCA
),
Washington D.C., USA
,
2019
.
4.
Elena
IoanaVatajelu
and
Giorgio
Di Natale
, "
High-Entrop STT-MTJ- Based TRNG
,"
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
, vol.
27
, no.
2
, pp.
491
495
, Feb.
2019
.
5.
Alessandro
Tomasi
,
Alessio
Meneghetti
,
Nicola
Massari
,
Leonardo
Gasparini
,
Daniele
Rucatti
, and
Hesong
Xu
, “
Model, Validation, and Characterization of a Robust Quantum Random Number Generator Based on Photon Arrival Time Comparison
,”
J. Lightwave Technol.
, vol.
36
, no.
18
, pp.
3843
3854
, Sep.
2018
.
6.
S.
Tawfeeq
, ‘
‘A random number generator based on single-photon avalanche photodiode dark counts
,’’
J. Lightw. Technol.
, vol.
27
, no.
24
, pp.
5665
5667
, Dec. 15,
2009
.
7.
F.-X.
Wang
,
C.
Wang
,
W.
Chen
,
S.
Wang
,
F.-S.
Lv
,
D.-Y.
He
,
Z.-Q.
Yin
,
H.-W.
Li
,
G.-C.
Guo
, and
Z.-F.
Han
, ‘
‘Robust quantum random number generator based on avalanche photodiodes
,’’
J. Lightw. Technol.
, vol.
33
, no.
15
, pp.
3319
3326
, Aug. 1,
2015
.
8.
B.
Ray
and
A.
Milenković
, ‘
‘True random number generation using read noise of flash memory cells
,’’
IEEE Trans. Electron Devices
, vol.
65
, no.
3
, pp.
963
969
, Mar.
2018
.
9.
E. I.
Vatajelu
and
G.
Di Natale
, ‘
‘High-entropy STT-MTJ-based TRNG,
’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
, vol.
27
, no.
2
, pp.
491
495
, Feb.
2019
.
10.
J. S.
Kim
,
M.
Patel
,
H.
Hassan
,
L.
Orosa
, and
O.
Mutlu
, ‘
‘D-RaNGe: Using commodity DRAM devices to generate true random numbers with low latency and high throughput,
’’ in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA
),
Washington, DC, USA
, Feb.
2019
, pp.
582
595
.
11.
J. R.
Janesick
,
Scientific Charge-Coupled Devices
.
Bellingham, WA, USA
:
SPIE
,
2001
.
12.
L. E.
Bassham
, III, ‘
‘A statistical test suite for random and pseudorandom number generators for cryptographic applications,
’’
NIST Special Publication 800-22 Rev. 1a
,
Gaithersburg, MD, USA, Tech. Rep. SP 800-22
,
2010
.
13.
E.
Barker
and
J.
Kelsey
, ‘
‘Recommendation for the entropy sources used for random bit generation,
’’
NIST DRAFT Special
,
Gaithersburg, MD, USA, Tech. Rep. SP 800-90B
,
2012
.
14.
X.
Ma
,
F.
Xu
,
H.
Xu
,
X.
Tan
,
B.
Qi
, and
H.-K.
Lo
, ‘
‘Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction,
’’
Phys. Rev. A, Gen. Phys.
, vol.
87
, no.
6
, pp.
062327
-
1
–062327-10, Jun.
2013
.
15.
B.
Barak
,
Y.
Dodis
,
H.
Krawczyk
,
O.
Pereira
,
K.
Pietrzak
,
F.-X.
Standaert
, and
Y.
Yu
, ‘
‘Leftover hash lemma, revisited,
’’ in
Proc. 31st Annu. Cryptol. Conf., Adv. Cryptol. (CRYPTO), in Lecture Notes in Computer Science
, vol.
6841
,
Santa Barbara, CA, USA
, Aug.
2011
, pp.
1
20
.
16.
M.
Troyer
and
R.
Renner
, ‘
‘A randomness extractor for the quantis device,
’’
FYI, ID Quantique, Geneva, Switzerland, Tech. Rep
.,
2012
.
17.
Federal Information Processing Standards Publication 180-4, SHS
,
London, U.K., Mar
.
2012
.
18.
Federal Information Processing Standards Publication 202, SHS
,
London, U.K
., Aug.
2015
.
19.
M.
Juliato
and
C.
Gebotys
, ‘‘FPGA implementation of an HMAC processor based on the SHA-2 family of hash functions,’’
Univ. Waterloo
,
Waterloo, ON, Canada
,
Tech. Rep. CACR 2011-10
,
2011
.
This content is only available via PDF.
You do not currently have access to this content.