Object segmentation of remotely sensed aerial (or very-high resolution, VHS) and satellite (or high- resolution, HR) pictures has been used in a variety of applications, most notably in road extraction, where segmented objects are used as a required layer in geographic databases. Several attempts have been made to extract roads from remote sensing pictures using the convolutional neural network (CNN); nevertheless, the accuracy is still restricted. In this study, we offer an improved CNN system incorporating fuzzy that uses fuzzy logic in the CNN to extract roads from remote sensing pictures. The fuzzy logic is used in our network to enhance the CNN by removing the ambiguities present in the input images, resulting in a greater number of and still more accurate extracted roads. The tests used data from the Bavaria, Aerial KITTI, Vaihingen, and Potsdam data sets. On any type of remote sensing data, our suggested approach proves to be a better object segmentation technique, in most situations.

1.
M.
Darweesh
,
S.
Al Mansoori
, and
H.
Alahmad
, “
Simple Roads Extraction Algorithm Based on Edge Detection Using Satellite Images
,”
2019 IEEE 4th Int. Conf. Image, Vis. Comput. ICIVC 2019
, pp.
578
582
,
2019
, doi: .
2.
N. S.
Kumar
,
B.
Sukanya
,
B.
Mohan
, and
G.
Prathibha
, “
Extraction of Roads from Satellite Images Based on Edge Detection
,”
Int. J. Eng. Dev. Res.
, vol.
5
, no.
2
, pp.
187
190
,
2017
.
3.
J.
Hormese
, “
Architectures for Road Classification from Satellite
,”
2018 Int. Conf. Inven. Res. Comput. Appl.
, no. Icirca, pp.
354
359
,
2018
.
4.
H. R. R.
Bakhtiari
,
A.
Abdollahi
, and
H.
Rezaeian
, “
Semi automatic road extraction from digital images
,”
Egypt. J. Remote Sens. Sp. Sci.
, vol.
20
, no.
1
, pp.
117
123
,
2017
, doi: .
5.
J.
Hormese
and
C.
Saravanan
, “
Automated Road Extraction From High Resolution Satellite Images
,”
Procedia Technol.
, vol.
24
, pp.
1460
1467
,
2016
, doi: .
6.
A.
Constantin
,
J. J.
Ding
, and
Y. C.
Lee
, “
Accurate Road Detection from Satellite Images Using Modified U-net
,”
2018 IEEE Asia Pacific Conf. Circuits Syst. APCCAS 2018
, pp.
423
426
,
2019
, doi: .
7.
A.
Buslaev
,
S.
Seferbekov
,
V.
Iglovikov
, and
A.
Shvets
, “
Fully convolutional network for automatic road extraction from satellite imagery
,”
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work.
, vol.
2018
-June, pp.
197
200
,
2018
, doi: .
8.
L.
Caltagirone
,
S.
Scheidegger
,
L.
Svensson
, and
M.
Wahde
, “
Fast LIDAR-based road detection using fully convolutional neural networks
,”
IEEE Intell. Veh. Symp. Proc.
, no.
Iv
, pp.
1019
1024
,
2017
, doi: .
9.
Y.
Wei
,
K.
Zhang
, and
S.
Ji
, “
Road Network Extraction from Satellite Images Using CNN Based Segmentation and Tracing
,”
Int. Geosci. Remote Sens. Symp.
, pp.
3923
3926
,
2019
, doi: .
10.
S.
Oehmcke
,
C.
Thrysoe
,
A.
Borgstad
,
M. A. V.
Salles
,
M.
Brandt
, and
F.
Gieseke
, “
Detecting Hardly Visible Roads in Low-Resolution Satellite Time Series Data
,”
Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019
, pp.
2403
2412
,
2019
, doi: .
11.
T.
Li
,
M.
Comer
, and
J.
Zerubia
, “
Feature Extraction and Tracking of CNN Segmentations for Improved Road Detection from Satellite Imagery
,”
Proc. - Int. Conf. Image Process. ICIP
, vol.
2019
-Septe, pp.
2641
2645
,
2019
, doi: .
12.
Y.
Nachmany
and
H.
Alemohammad
, “
Detecting Roads from Satellite Imagery in the Developing World
,”
2019 IEEE Conf. Comput. Vis. Pattern Recognit.
, no. June, pp.
83
89
,
2019
.
13.
Z.
Zhong
,
J.
Li
,
W.
Cui
, and
H.
Jiang
, “
Fully convolutional networks for building and road extraction: Preliminary results
,”
Int. Geosci. Remote Sens. Symp.
, vol.
2016
-Novem, pp.
1591
1594
,
2016
, doi: .
14.
Q.
Shi
,
X.
Liu
, and
X.
Li
, “
Road Detection from Remote Sensing Images by Generative Adversarial Networks
,”
IEEE Access
, vol.
6
, no. c, pp.
25486
25494
,
2017
, doi: .
15.
Z.
Hong
,
D.
Ming
,
K.
Zhou
,
Y.
Guo
, and
T.
Lu
, “
Road extraction from a high spatial resolution remote sensing image based on richer convolutional features
,”
IEEE Access
, vol.
6
, pp.
46988
47000
,
2018
, doi: .
16.
R.
Alshehhi
and
P. R.
Marpu
, “
Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images
,”
ISPRS J. Photogramm. Remote Sens.
, vol.
126
, pp.
245
260
,
2017
, doi: .
17.
I.
Grinias
,
C.
Panagiotakis
, and
G.
Tziritas
, “
MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images
,”
ISPRS J. Photogramm. Remote Sens.
, vol.
122
, pp.
145
166
,
2016
, doi: .
18.
Z.
Zhang
,
Q.
Liu
,
Y.
Wang
, and
S.
Member
, “
Deep Residual Network ***Jii***IMa - D-¥1z***.pdf
,” pp.
1
5
,
2018
.
19.
Z.
Miao
,
W.
Shi
,
P.
Gamba
, and
Z.
Li
, “
An Object-Based Method for Road Network Extraction in VHR Satellite Images
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.
8
, no.
10
, pp.
4853
4862
,
2015
, doi: .
20.
R.
Kestur
,
S.
Farooq
,
R.
Abdal
,
E.
Mehraj
,
O.
Narasipura
, and
M.
Mudigere
, “
UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle
,”
J. Appl. Remote Sens.
, vol.
12
, no.
01
, p.
1
,
2018
, doi: .
21.
C.
Henry
,
S. M.
Azimi
, and
N.
Merkle
, “
Road segmentation in SAR satellite images with deep fully convolutional neural networks
,”
IEEE Geosci. Remote Sens. Lett.
, vol.
15
, no.
12
, pp.
1867
1871
,
2018
, doi: .
22.
M.
Saati
and
J.
Amini
, “
Road network extraction from high-resolution sar imagery based on the network snake model
,”
Photogramm. Eng. Remote Sensing
, vol.
83
, no.
3
, pp.
207
215
,
2017
, doi: .
23.
M.
Karaduman
,
A.
Çınar
, and
H.
Eren
, “
UAV Traffic Patrolling via Road Detection and Tracking in Anonymous Aerial Video Frames
,”
J. Intell. Robot. Syst. Theory Appl.
, vol.
95
, no.
2
, pp.
675
690
,
2019
, doi: .
This content is only available via PDF.
You do not currently have access to this content.