The undergoing digital transformation of the global economy impacts the way freight transportation conduct businesses and interact with their customers. In parallel, concerns are increased in terms of environmental, social and ethical performance. Recent European Union regulation focused on the energy consumption and Greenhouse Gas emissions, with lower targets but also with the regular collection of real-world data, initially targeting heavy-duty vehicles, as environmental concerns were added to the economic considerations for a sustainable international transport. High precision fuel data with high density in time can help build the appropriate models and optimize operational costs, including direct or indirect factors (e.g., fuel consumption, waste and fraud), and eco driving (e.g., fuel efficient vehicle operation, drivers’ awareness). Taking into account the growing demand of a measurement process independent from the manufacturers, existing vertical data acquisition solutions often create silos with data organized separately, not harmonized, and being difficult to be compared and correlated. A holistic cyber physical approach is required to create knowledge and added value from all the related data streams and their associated events, resulting to implementation difficulties in terms of complexity, performance and costs. This paper reviews the need of the velocity, variety and volume of the required data in terms of fuel management and environmental impact, the benefits of their treatment, the practical problems of such implementations and how the digital twins concept applied in software models can help overcome them in a very elegant and efficient way, exhibiting superior performance for optimizing communication, real time business logic, reaction and quality control. Finally, a case study is presented, which based on the virtual actor pattern implementation gives practical and efficient solutions to the implemented architecture in terms of development effort, cost and resources optimization. Cloud services, data science and digital twins combined, constitute a cost driven and sustainable approach for fuel and eco-driving management in the transportation.

1.
U. C. M. D. D. G. a. A. T. L.
Angrisani
, “
IOT Enabling Measurement Applications in Industry 4.0: Platform for Remote Programming ATES
”, in
Workshop on Metrology for Industry 4.0 and IoT
,
2018
.
2.
T. P. a. B. O. Mario
Hermann
, “
Design principles for industrie 4.0 scenarios," in
49th Hawaii International Conference In System Sciences (HICSS)
,
2016
.
3.
S.-S. G. T. B. a. J. P. Miriam
Schleipen
, "
Opc ua & industrie 4.0 - enabling technology with high diversity and variability
”,
Procedia CIRP,
no.
57
, p.
315
320
,
2016
.
4.
H. K. W. W. J.
Helbig
, “
Recommendations for implementing the strategic initiative industrie 4.0
. In
Securing the future of German manufacturing industry
”,
2013
. [Online]. Available: https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf.
6.
R. D. a. A.
Horch
, "
Industrie 4.0: Hit or hype?
”,
Industrial Electronics Magazine, IEEE,
pp.
56
58
, 06 2014.
7.
Cisco
, “
White Paper - Internet of Everything (IoE) Value index," [Online]
. Available: https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioe-value-index-whitepaper.pdf.
8.
I.
Spectrum
, “
Will the Internet of Things be a technological and economic panacea?
”, 2015. [Online]. Available: https://spectrum.ieee.org/tech-talk/telecom/internet/jeremy-rifkin-on-the-internet-of-things-and-the-next-industrial-revolution.
9.
L.
Biedermann
, Supply Chain Resilienz.
Konzeptioneller Bezugsrahmen und Identifikation zukilnftiger Erfolgs-faktoren
,
Springer Gabler
,
Wiesbaden
,
2018
.
10.
K. F. J. &. P. J.
Dopfer
, "
Micro-meso-macro
”,
Journal of evolutionary economics,
vol.
14
, no.
3
, p. pp.
263
-
279
.9,
2004
.
11.
W. I. T.
Solution
, "
Germany trade balance, exports and imports by country and region 2001
’ " https://wits.worldbank.org/CountryProfile/en/Country/DEU/Year/2001/TradeFlow/EXPIMP, [retrieved 27 April 2021].
12.
W. I. T.
Solution
, "
Germany trade balance, exports and imports by country and region 2018
”, https://wits.worldbank.org/CountryProfile/en/Country/DEU/Year/2018/TradeFlow/EXPIMP, [retrieved 27 April 2021].
14.
O.
Foundation
, “
OPC Unified Architecture - Interoperability for Industrie 4.0 and the Internet of Things
”,
2016
. [Online]. Available: https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN.pdf. [Accessed 05 2021].
16.
L.
Insights
, 03 2021. [Online]. Available: https://www.ledgerinsights.com/shell-leads-11-million-renewable-energy-blockchain-startup-lo3/. [Accessed 04 2021].
17.
G. C.
Congress
. [Online]. Available: https://www.greencarcongress.com/2019/07/20190711-shell.html. [Accessed 03 2021].
18.
V. R. D. S. A. D. G. D. J. P. M. A. P. M.
Andoni
, "
Blockchain technology in the energy sector: A systematic review of challenges and opportunities
”,
Renewable and Sustainable Energy Reviews,
2018
.
20.
ecovadis, “
Sustainability Ratings
”, [Online]. Available: Ecovadis.org. [Accessed 05 2021].
21.
eurostat, “
Freight transport statistics - modal split
”, [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/in-dex.php/Freight_transport_statistics_-_modal_split#Modal_split_in_the_EU. [Accessed 04 2021].
23.
E.
Union
, “
Regulation (EU) 2019/1242 of June 20th 2019
”,
2019
.
25.
L. S. M. C. V. M. Gianmarco
Baldini
, "
Regulated applications for the road transportation infrastructure: The case study of the smart tachograph in the European Union
”,
International Journal of Critical Infrastructure Protection,
vol.
21
, no. .,
2018
.
26.
"Risk, resilience and rebalancing in global value chains,"
McKinsey Global Institute
,
2020
.
27.
P. I.
Transport
, "
Is ECM data accurate enough to make decision on fuel saving or operational issues?
”, https://thepitgroup.com/wp-content/uploads/2015/10/ECM-Case-Study-A-PIT-Group-Case-Study.pdf,
2015
.
29.
E.
Commission
, “
Commission implementing regulation (EU) 2016/799 of 18 march 2016
”,
implementing regulation (eu) no 165/2014 of the European Parliament and of the Council laying down the requirements for the construction, testing, installation, operation and repair of tachographs, no.
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0799.
30.
A. T. R. Institute
, "
An Analysis of the Operational Costs of Trucking
”,
2017
.
31.
A. D. D.
ADD
, "
white paper - AGpro fuel management
”,
2018
. [Online]. Available: https://www.alertgasoil.com/.
32.
L. M.
Materiels.fr
, “
Le plein de solutions pour faire baisser la consommation
”, [Online]. Available: https://www.lemoniteurmateriels.fr/article/le-plein-de-solutions-pour-faire-baisser-la-consommation,991470. [Accessed 04 2021].
33.
A. T.
Magazine
,
2019
. [Online]. Available: https://www.trucker.com/business/driving-bottom-line.
34.
E. P.
Agancy
, "
What You Should Know About Truck Engine Idling
”, http://www.epa.gov/region1/eco/diesel/pdfs/Diesel_Factsheet_Truck_Idling.pdf, EPA. April 1,
2002
.
35.
R.
McKay
, "
How To Prevent Diesel Theft - A $13 Billion Problem
”,
2018
. [Online]. Available: https://www.fuelcardcomparison.com.au/p/how-prevent-diesel-theft/.
36.
A. R. C. a. C. J.
Mufioz-Villamizar
, "
Machine learning and optimization-based modeling for asset management: a case study
”,
International Journal of Productivity and Performance Management,
2020
.
37.
M. I. a. M. T. M.
Jordan
, "
Machine learning: Trends, perspectives, and prospects
”,
Science,
vol.
349
, no.
6245
, p. pp.
255
-
260
., 2015.
38.
P.
Ongsulee
, “
Artificial intelligence, machine learning and deep learning
”, in
15th International Conference on ICT and Knowledge Engineering (ICT&KE)
,
2017
.
39.
K. A. I. D. a. D. D. P. P. G.
Papageorgas
, "
IoT gateways, cloud and the last mile for energy efficiency and sustainability in the era of CPS expansion: ’A bot is irrigating my farm.’
;,” in
TMREES18
,
2018
.
40.
S. S. S. B. Salil
Bhalla
, "
Artificial Intelligence and Expert Systems
”,
International Journal of Science, Technology & Management
, vol.
04
, no. Sp. issue
01
, p.
9
,
2015
.
41.
Martin
Friedli
,
Lukas
Kaufmann
and
Francesco
Paganini
, "
Energy Efficiency of the Internet Of Things
”,
IEA 4E EDNA
,
2016
.
42.
F.
Fusaro
, "
Sharing knowledge in a digital age, conclusions of a strategic workshop
”,
European Commision’s Information & Society DG, Burssels
,
2011
.
43.
E. C. -.
FUTURIUM
, "
Digital Transition
”, [Online]. Available: https://ec.europa.eu/futurium/en/digital-transition. [Accessed 05 2021].
44.
U. C. M. D. D. G. A. T. Leopoldo
Angrisani
, “
IoT enabling measurement applications in Industry 4.0: platform for remote programming ATEs," in
Workshop on Metrology for Industry 4.0 and IoT
,
Brescia, Italy
,
2018
.
45.
Papageorgas
P
,
Piromalis
D
,
Iliopoulou
T
,
Agavanakis
K
,
Barbarosou
M
,
Prekas
K
and etal, "
Wireless sensor networking architecture of polytropon: an open source scalable platform for the Smart Grid
”,
Energy Procedia,
vol.
50
, p. pp.
270
276
,
2014
.
46.
A. M. N. R. R. A. R. R.
Balaji
, "
Advanced implementation patterns of internet of things with MQTT providers in the cutting edge communications
”,
2020
.
47.
HiveMQ
. [Online]. Available: https://www.hivemq.com/solutions/iot/enabling-the-connected-car. [Accessed 04 2021].
48.
V. S. N. G. Monika
Kashyap
, "
Taking MQTT and NodeMcu to IOT - Communication in Internet of Things
”,
Procedia Computer Science,
vol.
132
, pp.
1611
1618
,
2018
.
49.
Google, “
Protocol Buffers - Language Guide
”, [Online]. [Accessed 05 2021].
50.
L. &. P. T. &. P. A.
Fitriya
, "
A review of data compression techniques
”,
International Journal of Applied Engineering Research,
pp.
8956
8963
,
2017
.
51.
Ramer-Douglas-Peucker algorithm
”, [Online]. Available: https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm.
52.
D. D. a. T.
Peucker
, "
Algorithms for the reduction of the number of points required to represent a digitized line or its caricature
”,
The Canadian Cartographer,
1973
.
53.
G. E. K. M. T. E. P. C. M. M. J. F. V. T. L. K. Kyriakos N
Agavanakis
, “
Practical machine learning based on cloud computing resources," in
TMREES 19, AIP Conference Proceedings
2123
,
020096
(
2019
), 2019.
54.
M. E. A. a. K. R. B.
, “
Cyber-physical Systems and Digital Twins
”, in
Proceedings of the 16th International Conference on Remote Engineering and Virtual Instrumentation.
.
56.
E.
&.
F. L.
&.
M. M.
Negri
, "
A Review of the Roles of Digital Twin in CPS-based Production Systems
”,
Procedia Manufacturing
11
:
939
-
948
,
2017
.
57.
Forbes
, "
What is Digital Twin Technology and Why is it so important
”,
2017
. [Online]. Available: https://www.forbes.com/sites/bernardmarr/2017/03/06/what-is-digital-twin-technology-and-why-is-it-so-important/?sh=6c1e36d72e2a. [Accessed 04 2021].
58.
S. &. C. A. &. S. M.
Nagar
, “
Optimized Additive Manufacturing Technology Using Digital Twins and Cyber Physical Systems
.," in
Cyber-physical Systems and Digital Twins, doi
:,
2020
.
59.
J.
MSV
, “
The role of device twins in industrial IoT solutions," 10 2017. [Online]. Available
: https://www.forbes.com/sites/janakirammsv/2017/10/30/the-role-of-device-twins-in-designing-industrial-iot-solutions/?sh=229d51ab20ac. [Accessed 04 2021].
60.
A.
Saad
,
S.
Faddel
and
O.
Mohammed
, “
IoT-Based Digital Twin for Energy Cyber-Physical Systems: Design and Implementation.," Energies, 2020
.
61.
J. B. R. a. D. H.
Rhodes
, "Digital System Models: An investigation of the non-technical challenges and research needs," in
Conference on Systems Engineering Research
,
Systems Engineering Advancement Research Initiative, Massachusetts Institute of Technology
,
E38-572, 77 Mass. Ave, Cambridge, MA, 02139
,
2016
.
62.
G. V. W. G. L. a. K. D. B. Roland
Rosen
, "
About the importance of autonomy and digital twins for the future of manufacturing
.,"
IFAC PapersOnLine,
vol.
48
, no.
3
, p.
567
-
572
, 2015.
64.
M.
Shafto
,
M.
Conroy
,
R.
Doyle
,
E.
Glaessgen
,
C.
Kemp
,
J.
LeMoigne
and
L.
Wang
, “
DRAFT Modeling,Simulation, Information Technology & Processing Roadmap Technology Area
”,
2010
. [Online]. Available: https://www.nasa.gov/pdf/501321main_TA11-MSITP-DRAFT-Nov2010-A1.pdf. [Accessed 05 2021].
65.
E.
Conte
,
P.
Mendes
and
J.
Normey-Rico
, “
Economic management based on hybrid MPC for microgrids:A Brazilian Energy Market Solution
,"
Energies
, vol.
13
, no.
3508
,
2020
.
66.
M.
Grieves
, "
Digital Twin: Manufacturing Excellence through Virtual Factory Replication
”,
2015
. [Online]. Available: https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Vi rtual_Factory_Replication.
67.
[Online]. Available: https://www.plm.automation..
69.
Gartner
, “
Gartner Survey Reveals Digital Twins are Enetering MainstreamUse
”, 2019. [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/2019-02-20-gartner-survey-reveals-digital-twins-are-entering-mai.
71.
siemens, “
Twins with potential
”, [Online]. Available: https://new.siemens.com/global/en/company/stories/industry/the-digital-twin.html. [Accessed 05 2021].
72.
G. E.
Digital
. [Online]. Available: https://www.ge.com/digital/applications/digital-twin.
73.
G. E.
Digital
, “
Digital Twins: Debunking the myths," [Online]. Available
: https://www.ge.com/digital/blog/digital-twins-debunking-myths. [Accessed 04 2021].
74.
Digital Twin Consortium
”, [Online]. Available: https://www.digitaltwinconsortium.org/index.htm.
75.
R. G. A.
 et. al, “
A digital twin for smart farming
”, in
IEEE Global Humanitarian Technology Conference (GHTC)
,
2019
.
76.
D.
Korzun
,
E.
Balandina
,
A.
Kashevnik
,
S.
Balandin
and
F.
Viola
, "
Ambient Intelligence Services in IoT Environments: Emerging Research and Opportunities
”,
2019
. [Online]. Available: https://www.igi-global.com/gateway/book/218560.
77.
A.
Al-Ali
,
R.
Gupta
,
T. Zaman
Batool
,
T.
Landolsi
,
F.
Aloul
and
A.
Al Nabulsi
, "
Digital Twin Conceptual Model within the Context of Internet of Things
.,"
Future Internet,
vol.
12
, no.
163
,
2020
.
78.
C. P. B. a. R. S.
Hewitt
, “
A Universal Modular Actor Formalism for Artificial Intelligence
”, in
3rd International Joint Conference on Artificial intelligence
,
1973
.
79.
G. &. K. F. &. F. D. &. S. V.
Kortuem
, "
Smart Objects as Building Blocks for the Internet of Things
”,
Internet Computing, IEEE, no.
DOI:.
80.
akka.net, “
What is akka.net
”, [Online]. Available: https://getakka.net/articles/intro/what-is-akka.html.
81.
S. B. J. T. P
Bernstein
, "
Orleans - Virtual Actors
”,
2015
. [Online]. Available: https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=http%3A%2F%2Fresearch.microsoft.com%2Fprojects%2Forleans%2F. [Accessed 05 2021].
82.
P. G. P. G. A. V. D. A. a. C. S. Kyriakos
Agavanakis
, "
Energy trading market evolution to the energy internet a feasibility review on the enabling internet of things (IoT) cloud technologies
”,
2018
.
83.
K. A. K
Thrampoulidis
, “
Object Interaction Diagram - A new technique in object-oriented analysis and design
”,
Journal of Object Oriented Programming,
pp.
25
32
,
39
, 06
1995
.
84.
J.
Armstrong
, "
Erlang
”,
Communications of the ACM,
vol.
53
, no.
9
, p.
68
75
,
2010
.
85.
"
Akka documentation
”, [Online]. Available: http://akka.io/docs/.
86.
a. d. o. E. A.
BioWare
, “
Orbit Virtual Actor Platform," [Online]. Available
: https://www.orbit.cloud/orbit/.
87.
A. G. G. K. J. L. R. P. J. T. Sergey
Bykov
, “
Orleans, Cloud computing for everyone," in
SOCC 2011, Proceedings of the 2nd ACM symposium on Cloud computing
, https://dl.acm.org/doi/10.1145/2038916.2038932, October
2011
.
88.
P.
Bernstein
, “
Actor-Oriented Database Systems
”, in
Proceedings of the 2018 IEEE 34th International Conference on Data Engineering
, ISBN-13: 9978-1-5386-5520-7,
2018
.
89.
P.
&.
D. M.
&.
K. T.
&.
M. D.
Bernstein
, “
Indexing in an Actor-Oriented Database
”, in
Conference on Innovative Database Research (CIDR)
,
2017
.
91.
L.
Desbuissons
, “
COMMUNIQUE DE PRESSE, Mardi 21 janvier 2020
”,
Governement Administration MARSEILLE, Marseille
,
2020
.
92.
ADD
, “
AG white paper - Observed average savings on alertgasoil’s customers representing 9000 HDVs
”,
Marseille
,
2020
.
93.
Soma
Bandyopadhyay
and
Abhijan
Bhattacharyya
, “
Lightweight Internet Protocols for Web Enablement of Sensors using Constrained Gateway Devices
”, in
International Conference on Computing, Networking and Communications, Workshops Cyber Physical System
,
2013
.
94.
L.
Alliance
. [Online]. Available: https://lora-alliance.org/.
95.
Teltonika
. [Online]. Available: https://wiki.teltonika-gps.com/view/Codec.
97.
T. T. R. a. F. J.
Hastie
, The elements of statistical learning: data mining, inference, and prediction, 2nd edn,
Berlin
:
Spinger
,
2009
.
98.
I. B. Y. a. C. A.
Goodfellow
,
Deep Learning (Adaptive Computation and Machine Learning series)
,
Cambridge, England
:
e MIT Press
,
2016
.
99.
eurostat, "
Freight transport statistics - modal split
”, https://ec.europa.eu/eurostat/statistics-explained/index.php/Freight_transport_statistics_-_modal_split#Modal_split_in_the_EU, [retrieved 26 April 2021].
100.
A. T.
Magazine
,
2019
. [Online]. Available: https://www.trucker.com/business/driving-bottom-line.
101.
U. C. M. D. D. G. a. A. T. L.
Angrisani
, “
IOT Enabling Measurement Applications in Industry 4.0 - Platform for Remote Programming ATES," in
Workshop on Metrology for Industry 4.0 and IoT
,
2018
.
102.
D. T.
Consortium
. [Online]. Available: https://www.digitaltwinconsortium.org/index.htm.
103.
S. W. a. B. L. L.
Zhang
, "
Deep learning for sentiment analysis: A survey
”,
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol.
8
, no.
4
,
2018
.
104.
A.
Saad
,
S.
Faddel
and
O.
Mohammed
, "
IoT-Based Digital Twin for Energy Cyber-Physical Systems: Design and Implementation
”,
Energies 13,
2020
.
105.
R. B. K. P. S. S. V. B. P. A. S.
Hiremath P.S.
, "Machine Health Monitoring of Induction Motors," in
Cyber-physical Systems and Digital Twins. REV2019 2019. Lecture Notes in Networks and Systems
, vol
80
.
Springer, Cham
, ,
2019
.
106.
G.
Digital
, “
Digital Twins: Debunking the myths
”, [Online]. Available: https://www.ge.com/digital/blog/digital-twins-debunking-myths.
107.
G. v. W. G. L. K. D. B. Roland
Rosen
, "
About The Importance of Autonomy and Digital Twins for the Future of Manufacturing
”,
IFAC-PapersOnLine,
vol.
48
, no.
3
, pp.
567
572
,
2015
.
108.
P.
Marwedel
, Embedded System Design, Embedded Systems,
Foundations of Cyber-Physical Systems and the Internet of Things
,
Cham, Switzerland
:
Springer International Publishing,Third Edition
,
2018
.
109.
J.
Rifkin
,
The Zero Marginal Cost Society: The Internet of Things, the Collaborative Commons, and the Eclipse of Capitalism
,
St. Martin’s Press
,
2014
.
110.
"
SigFox
”, [Online]. Available: https://www.sigfox.com/en. [Accessed 28 January 2018].
111.
"ublox," [Online]. Available: https://www.u-blox.com/en/narrowband-iot-nb-iot. [Accessed 28 January 2018].
112.
S.
Tenorio
, “
The future in our hands with the commercial launch of NB-IoT in Vodafone Spain
”, [Online]. Available: http://www.vodafone.com/content/index/what /technology-blog/nbiot-commercial-launch-spain.html.
113.
114.
"Semtech," [Online]. Available: https://www.semtech.com/products/wireless-rf/lora-transceivers. [Accessed 28 January 2018].
115.
T. C. Sebastian
Burckhardt
, in
OOPSLA
,
2018
.
116.
E.
Union
, "
Regulation (EU) 2019/1242 of June 20th 2019
”,
2019
.
This content is only available via PDF.
You do not currently have access to this content.