Previous studies indicate that the use of multiple representations helps students become better problem solvers. In this study, the researcher wants to explore and highlight the representation design and develop by the secondary school students during problem-solving in real-world physics problems. The Think-Aloud Protocol (TAP) was developed to provide more information about how students design and use representation to solve problems. The analysis was qualitative in nature, focusing principally on the characteristics of the representations employed as well as the underlying reasoning for their applications. The function of representations created mostly to make students visualize the problem clearly after reading the texts given in the problems. Findings revealed the eleven formats used by students that are divided into four categories: sketch, text, symbolic and mathematics to solve the real problems within the concept of force and motion. These findings are particularly important for teachers to apply multiple formats of representation in teaching physics and problem- solving.

1.
Ministry of Education Malaysia
,
Annual Report 2018: Malaysia Education Development Plan 2013-2025, Putrajaya, Malaysia, 2018.
[Online]. Available: https://www.moe.gov.my/en/muaturun/penerbitan-dan-jurnal/pppm-2013-2025-pendidikan-prasekolah-hingga-lepas-menengah/laporan-tahunan-2018/3283-laporan-tahunan-bm/file.
2.
T.
Gok
and S1lay,
"The effects of problem solving strategies on students' achievement, attitude and motivation,
Am. J. Phys. Educ
, Vol.
4
, No.
1
,
2010
, Accessed: Jan. 27, 2018. [Online]. Available: http://www.lajpe.org/jan10/02_Tolga_Gok.pdf.
3.
C.
Singh
, “
Problem solving and learning
,”
AIP Conf. Proc.
, Vol.
1140
, No.
1972
, pp.
183
197
,
2009
, doi: .
4.
J. M.
Spector
,
B. B.
Lockee
,
S. E.
Smaldino
, and
M. C.
Herring
, “Mindtools and problem solving,” in
Learning, Problem Solving, and Mindtools
, 1st ed.,
J. M.
Spector
,
B. B.
Lockee
,
S. E.
Smaldino
, and
M. C.
Herring
, Eds.
New York
:
Routledge
, pp.
1
9
,
2013
.
5.
M.
Vijaya
,
B.
Reddy
, and
B.
Panacharoensawad
, “
Students problem-solving difficulties and implications in Physics: An empirical study on influencing factors
,”
J. Educ. Pract.
, Vol.
8
, No.
14
,
2017
, [Online]. Available: http://files.eric.ed.gov/fulltext/EJ1143924.pdf.
6.
L.
Halim
,
N. A.
Rahman
,
N. A. M.
Ramli
, and
L. E.
Mohtar
, “
Influence of students’ STEM self-efficacy on STEM and physics career choice
,” in
AIP Conference Proceedings
,
2018
, vol.
1923
, doi: .
7.
Ministry of Education Malaysia Curriculum Development Center
,
Curriculum Specification Form 4 Physics
.
Putrajaya
:
Ministry of Education Malaysia
,
2012
.
8.
W. J.
Gerace
, “
Problem Solving and Conceptual Understanding
,” in
Physics Education Research Conference Proceedings
, pp.
1
4
,
2001
. doi: .
9.
J. L.
Docktor
and
J. P.
Mestre
, “
Synthesis of discipline-based education research in Physics
,”
Phys. Rev. Spec. Top. - Phys. Educ. Res.
, Vol.
10
, No.
2
,
2014
, doi: .
10.
J. L.
Docktor
,
N. E.
Strand
,
J. P.
Mestre
, and
B. H.
Ross
, “
Conceptual problem solving in high school Physics
,”
Phys. Rev. Spec. Top.- Phys. Educ. Res.
, Vol.
11
, No.
2
,
2015
, doi: .
11.
W. J.
Gerace
and
I. D.
Beatty
, “
Teaching vs. learning: Changing perspectives on problem solving in physics instruction
,” in
9th Common Conference Cyprus Physics Association and Greek Physics Association
, pp.
1
10
,
2005
. [Online]. Available: https://arxiv.org/ftp/physics/papers/0508/0508131.pdf.
12.
R. J.
Dufresne
,
W. J.
Gerace
, and
W. J.
Leonard
, “
Solving physics problems with multiple representations
,”
Phys. Teach.
, Vol.
35
, No.
270
, pp.
270
275
,
1997
, doi: .
13.
J. I.
Heller
and
F.
Reif
, “
Prescribing effective human problem-solving processes: Problem description in physics
,”
Cogn. Instr.
, vol.
1
, No.
2
, pp.
177
216
,
1984
.
14.
R.
Moreno
,
G.
Ozogul
, and
M.
Reisslein
, “
Teaching with concrete and abstract visual representations: Effects on students’ problem solving, problem representations, and learning perceptions
.,”
J. Educ. Psychol.
, Vol.
103
, No.
1
, pp.
32
47
,
2011
, doi: .
15.
P. B.
Kohl
and
N. D.
Finkelstein
, “
Patterns of multiple representation use by experts and novices during Physics problem solving
,”
Phys. Rev. Spec. Top. - Phys. Educ. Res.
, Vol.
4
, No.
1
,
2008
. doi: .
16.
P.
Nieminen
,
A.
Savinainen
, and
J.
Viiri
, “
Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning
,”
Phys. Rev. Spec. Top. - Phys. Educ. Res.
, Vol.
8
, no.
1
,
2012
. doi: .
17.
A.
Van Heuvelen
and
X.
Zou
, “
Multiple representations of work–energy processes
,”
Am. J. Phys.
, Vol.
69
, No.
2
, pp.
184
194
,
2001
. doi: .
18.
A.
Maries
and
C.
Singh
, “
To use or no to use diagrams: The effect of drawing a diagram in solving introductory physics problems
,”
AIP Conf. Proc.
, Vol.
1513
, pp.
282
285
, Jan.
2016
. doi: .
19.
L.
Kohl
and
P.
Finkelstein
, “
Expert and novice use of multiple representations during physics problem solving
,” in
AIP Conference Proceedings
, pp.
132
135
,
2007
. [Online]. Available: http://www.colorado.edu/physics/EducationIssues/papers/Kohl_etal/PK_PERC2007PostReview.pdf.
20.
S.
Ainsworth
, “
DeFT: A conceptual framework for considering learning with multiple representations
,”
Learn. Instr.
, Vol.
16
, pp.
183
198
,
2006
. doi: .
21.
R.
Tytler
and
P.
Hubber
, “
Constructing representations to learn science
,” in
Using Multimodal Representations to Support Learning in the Science Classroom
,
B.
Hand
,
M.
Mcdermott
, and
V.
Prain
, Eds. Dordrecht, pp.
159
183
,
2016
.
22.
M.
Mazlena
,
A. P.
Fatin
, and
M. Lilia
Ellany
, “
Learning transfer between the concept of forces in Equilibrium and Trigonometry application
,” in
Proceeding 2nd International Seminar on Quality and Affordable Education (ISQAE 2013
), No. Isqae
2013
, pp.
11
20
,
2013
. [Online]. Available: http://educ.utm.my/wp-content/uploads/2013/11/23.pdf.
23.
B.
Ibrahim
and
S.
Rebello
, “
Representational task formats and problem solving strategies in kinematics and work
,”
Phys. Rev. Spec. Top. - Phys. Educ. Res.
, Vol.
8
, No.
1
, pp.
1
19
, Jun.
2012
. doi: .
24.
D. H.
Nguyen
and
N. S.
Rebello
, “
Students’ difficulties in transfer of problem solving across representations
,” in
AIP Conference Proceedings
, Vol.
1179
, pp.
221
224
,
2009
. doi: .
25.
E.
Charters
, “
The use of think-aloud methods in qualitative research: An Introduction to think-aloud methods
,”
Brock Educ.
, Vol.
12
, No.
2
, pp.
68
82
,
2003
. doi: .
26.
K. A.
Ericsson
and
H. A.
Simon
, “
Verbal reports as data
,”
Psychol. Rev.
, Vol.
87
, No.
3
, pp.
215
251
,
1980
. doi: .
27.
S. T.
Flanders
,
Investigating Flexibility, Reversibility, and Multiple Representations in a Calculus Environment
, Unpublished Ph.D. dissertation,
Dept. Physics and Astro.,Univ. of Pittsburgh
,
Pittsburgh, PA
,
2014
.
28.
A.
Maries
,
S. Y.
Lin
, and
C.
Singh
, “
Challenges in designing appropriate scaffolding to improve students’ representational consistency: The case of a Gauss's law problem
,”
Phys. Rev. Phys. Educ. Res.
, Vol.
13
, No.
2
, pp.
1
17
,
2017
. doi: .
29.
A. J.
Magana
and
S.
Balachandran
, “
Students’ development of representational competence through the sense of touch
,”
J. Sci. Educ. Technol.
, Vol.
26
, No.
3
, pp.
332
346
,
2017
. doi: .
30.
L.
Bollen
,
P.
Van Kampen
,
C.
Baily
,
M.
Kelly
, and
M.
De Cock
, “
Student difficulties regarding symbolic and graphical representations of vector fields
,”
Phys. Rev. Phys. Educ. Res.
, Vol.
13
, No.
2
, pp.
1
17
,
2017
. doi: .
31.
P.
Klein
,
A.
Müller
, and
J.
Kuhn
, “
Assessment of representational competence in kinematics
,”
Phys. Rev. Phys. Educ. Res.
, Vol.
13
, No.
1
, pp.
1
18
,
2017
. doi: .
32.
A.
Marlina
and
S. Abdul
Halim
,
Abdullah
Nurshamela
, “
The importance of metacognition in physics problem solving: Monitoring skills
,” in
Proceeding 1st International Conference on Educational Studies (ICES) 2015
, 2-4 Jun,
2015
.
33.
M. A.
Rau
,
V.
Aleven
, and
N.
Rummel
, “
Making connections among multiple graphical representations of fractions: sense-making competencies enhance perceptual fluency, but not vice versa
,”
Instr. Sci.
, Vol.
45
, No.
3
, pp.
331
357
,
2017
. doi: .
34.
A. Fatin Aliah
Phang
,
The Patterns of Physics Problem-Solving from the Perspective of Metacognition
, Unpublished Ph.D. dissertation, Fac. of Educ.,
University of Cambridge, Cambridge
,
2009
.
35.
R. K.
Yin
, “
Validity and generalization in future case study evaluations
,”
Evaluation
, Vol.
19
, No.
3
, pp.
321
332
,
2013
. doi: .
36.
A.
Maries
,
Role of Multiple Representations in Physics Problem Solving, Unpublished Ph.D. dissertation
, Dept. Physics and Astro.,
Univ. of Pittsburgh, Pittsburgh
,
PA
,
2014
.
37.
J.
Van Der Veen
, “Draw Your Physics Homework?” in
Drawing for Science Education
,
P.
Katz
, Ed.
Rotterdam
:
Sense Publishers
, pp.
11
29
,
2017
.
38.
C.S.
Hung
and
H.K.
Wu
, “
Tenth graders’ problem-solving performance, self-efficacy, and perceptions of physics problems with different representational formats
,”
Phys. Rev. Phys. Educ. Res.
, Vol.
14
, no.
2
, pp.
020114
,
2018
. doi: .
39.
D. E.
Meltzer
, “
Relation between students’ problem-solving performance and representational format
,”
Am. J. Phys.
, Vol.
73
, No.
5
, pp.
463
478
,
2005
. doi: .
40.
Ministry of Education Malaysia
,
Curriculum and Assessment Standard Documents Physics Form 4 and 5, Ministry of Education Malaysia
,
2019
.
41.
M.
Murshed
,
F. A.
Phang
, and
M. A. H.
Bunyamin
, “
Transformation of multiple representations in understanding real-world physics problems
,”
Int. J. Psychosoc. Rehabil.
, Vol.
24
, No.
5
,
2020
. doi: .
42.
M.
De Cock
, “
Representation use and strategy choice in physics problem solving
,”
Phys. Rev. Spec. Top. - Phys. Educ. Res.
, Vol.
8
, No.
2
,
2012
. doi: .
43.
L.
Bollen
,
P.
van Kampen
,
C.
Baily
, and
M.
De Cock
, “
Qualitative investigation into students’ use of divergence and curl in electromagnetism
,”
Phys. Rev. Phys. Educ. Res.
, Vol.
12
, No.
2
, p.
020134
, Oct.
2016
. doi: .
44.
S.
Ainsworth
,
V.
Prain
, and
R.
Tytler
, “
Drawing to Learn in Science
,”
Science
, Vol.
333
, No.
6046
, pp.
1096
1097
, Aug.
2011
. doi: .
45.
D.
Rosengrant
,
A.
Van Heuvelen
, and
E.
Etkina
, “
Case study: students’ use of multiple representations in problem solving
,” in
Physics Education Research Conference 2005, Salt Lake City, Utah
,
2005
, https://www.compadre.org/Repository/document/ServeFile.cfm?ID=8912&DocID=2823.
46.
B.
Ibrahim
,
L.
Ding
,
A. F.
Heckler
,
D. R.
White
, and
R.
Badeau
, “
How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students’ mathematical performance
,”
Phys. Rev. Phys. Educ. Res.
, Vol.
13
, No.
2
, Oct.
2017
. doi: .
47.
D.
Rosengrant
, “
Multiple representations and free-body diagrams: Do students benefit from using them?
” Ed.D. dissertation, Sch. of Art and Sci., Rut. State Univ. of New Jersey,
New Brunswick, NJ
,
2007
, [Online]. Available: http://proquest.umi.com/pqdweb?did=1390311981&Fmt=7&clientId=20333&RQT=309&VName=PQD.
48.
J.
de Kleer
, “
Multiple representations of knowledge in a mechanics problem-solver
,” in
Readings in Qualitative Reasoning About Physical Systems
, pp.
40
45
,
1990
.
49.
R. J.
Dufresne
,
W. J.
Gerace
, and
W. J.
Leonard
, “
Solving Physics problems with multiple representations
,”
Phys. Teach.
, Vol.
35
, No.
5
, p.
270
,
1997
. doi: .
50.
B.
Ibrahim
,
L.
Ding
,
A. F.
Heckler
,
D. R.
White
, and
R.
Badeau
, “
Students’ conceptual performance on synthesis physics problems with varying mathematical complexity
,”
Phys. Rev. Phys. Educ. Res.
, vol.
13
, no.
1
, Jun.
2017
. doi: .
51.
S.
Ainsworth
and
A. Th
Loizou
, “
The effects of self-explaining when learning with text or diagrams
,”
Cogn. Sci.
, Vol.
27
, No.
4
, pp.
669
681
,
2003
. doi: .
52.
S. E.
Lodge-Scharff
,
Investigating Student Mental Models at the Intersection of Mathematics and Physical Reasoning in Physics
, Unpublished M.S. Thesis,
Dept. Edu. Hum. Dev., Univ. of Maine
,
Orono, ME
,
2017
.
53.
J. J.
Solaz-portolés
and
V. S.
Lopez
, “
Representations in problem solving in Science: Directions for practice
,”
Asia-Pacific Forum Sci. Learn. Teach.
, Vol.
8
, No.
2
, pp.
1
17
,
2007
. [Online]. Available: https://www.eduhk.hk/apfslt/v8_issue2/joan/joan5.htm.
54.
B. L.
Sherin
,
The Symbolic Basis of Physical Intuition: A study of two symbol systems in Physics instruction
, Unpublished Ph.D. dissertation,
Dept. Sci. Math. Edu.,Univ. of Berkeley
,
Berkeley,CA
,
1996
.
55.
E. T.
Torigoe
, “
Unpacking symbolic equations in introductory physics
,” arXiv Prepr. arXiv1508.00535., pp.
1
19
, Aug. 2015. [Online]. Available: http://arxiv.org/abs/1508.00535.
56.
N.
Weliweriya
,
T.
Huynh
, and
E. C.
Sayre
, “
Standing fast: Translation among durable representations using evanescent representations in upper-division problem solving
,” pp.
432
435
,
2018
. doi: .
57.
V. J.
Flood
,
F. G.
Amar
,
R.
Nemirovsky
,
B. W.
Harrer
,
M. R. M.
Bruce
, and
M. C.
Wittmann
, “
Paying attention to gesture when students talk chemistry: Interactional resources for responsive teaching
,”
J. Chem. Educ.
, Vol.
92
, No.
1
, pp.
11
22
,
2015
. doi: .
This content is only available via PDF.
You do not currently have access to this content.