The severe hazard of atmospheric air pollution to humans has made air quality tracking and prediction of significant focus lately. Consequently, the Indian government has established specific air quality indexes (AQI’s) to communicate and forecast atmospheric air pollution levels across major cities. However, the air quality index measures require accurate on-target sensor learning and sophisticated statistics. Typically, this makes precise outputs difficult for portable air quality monitoring systems. Therefore, this study proposes an alternative parallel image processing technique with supervised machine learning algorithms that capture images from nature and use image processing to track particulate matter PM2.5 concentration. Ultimately, the findings of the study indicate that the proposed solution is accurate by using a parallel image processing technique.

1.
Hodgeson
,
J.
,
McClenny
,
W.
,
Hanst
,
P.
,
1973
.
Air pollution monitoring by advanced spectroscopic techniques: a variety of spectroscopic methods are being used to detect air pollutants in the gas phase
.
Science
182
,
248
258
. .
2.
Li
,
L.
,
Zheng
,
Y.
,
Zhang
,
L.
,
2014
.
Demonstration abstract: PiMi air box: A cost-effective sensor for participatory indoor quality monitoring
.
Proceedings of the 13th International Symposium on Information Processing in Sensor Networks
.
IEEE Press
, pp.
327
328
.
3.
Li
,
F.
,
Liu
,
Y.
,
,
J.
,
Liang
,
L.
,
Harmer
,
P.
,
2015a
.
Ambient air pollution in China poses a multifaceted health threat to outdoor physical activity
.
J. Epidemiol. Community Health
69
,
201
204
..
4.
N.
Khamisan
,
K. H.
Ghazali
and
W. L.
Ching
Detection of indoor air pollution on wet or moist walls using thermal image processing technique
ARPN Journal of Engineering and Applied Sciences
, VOL.
10
, NO.
3
, FEBRUARY
2015
5.
Li
,
Y.
,
Huang
,
J.
,
Luo
,
J.
,
2015b
.
Using user-generated online photos to estimate and monitor air pollution in major cities
.
Proceedings of the 7th International Conference on Internet Multimedia Computing and Service
. ACM, p.
79
. .
6.
Li
,
X.
,
Peng
,
L.
,
Hu
,
Y.
,
Shao
,
J.
,
Chi
,
T.
,
2016
.
Deep learning architecture for air quality predictions
.
Environ. Sci. Pollut. Res.
23
,
22408
22417
. .
7.
Lin
,
M.
,
Chen
,
Q.
,
Yan
,
S.
,
2013
.
Network in Network.
arXiv preprint arXiv:1312.4400. https://arxiv.org/abs/1312.4400.
8.
Lin
,
Z.
,
Feng
,
M.
,
CNd
,
Santos
,
Yu
,
M.
,
Xiang
,
B.
,
Zhou
,
B.
, et al.,
2017
.
A Structured Selfattentive Sentence Embedding
. arXiv preprint arXiv:1703.03130. https://arxiv.org/abs/1703.0313
9.
C.
Zhu
,
C.
Zheng
,
L.
Shu
, and
G.
Han
, “
A survey on coverage and connectivity issues in wireless sensor networks
,”
Journal of Network and Computer Applications
, vol.
35
, no.
2
, pp.
619
632
, 201
10.
Rijal
,
N.
,
Gutta
,
R.T.
,
Cao
,
T.
,
Lin
,
J.
,
Bo
,
Q.
,
Zhang
,
J.
,
2018
.
Ensemble of deep neural networks for estimating particulate matter from images
.
2018 IEEE 3rd International Conference on Image, Vision, and Computing (ICIVC
).
IEEE
, pp.
733
738
.
11.
Y
Huang
,
J.
,
Luo
,
J.
,
2015b
.
Using user-generated online photos to estimate and monitor air pollution in major cities
.
Proceedings of the 7th International Conference on Internet Multimedia Computing and Service
.
ACM
, p.
79
. .
12.
Ameer
,
S.
,
Shah
,
M.A.
,
Khan
,
A.
,
Song
,
H.
,
Maple
,
C.
,
Islam
,
S.U.
, et al.,
2019
.
Comparative analysis of machine learning techniques for predicting air quality in smart cities
.
IEEE Access
7
,
128325
128338
.
13.
Demin
Wang
,
Yan
Huang
,
Weitao
li
Real-time air pollutants rendering based on image processing
IJITCS
, November
2011
14.
Younan
,
D.
,
Petkus
,
A.J.
,
Widaman
,
K.F.
,
Wang
,
X.
,
Casanova
,
R.
,
Espeland
,
M.A.
, et al.,
2019
.
Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer’s disease
.
Brain
.
15.
Avijoy
Chakma
,
Ben
Vizena
,
Tingting
Cao
,
Jerry
Lin
,
2017
Image-based Air quality using deep convolution neural network
This content is only available via PDF.
You do not currently have access to this content.