New, sustainable low-Carbon Dioxide (CO2) construction materials must be developed for the global building sector to decrease its environmental impact. During the last several decades, Alkali-activated Materials (AAMs) is a Portland cement-free form, have been intensively researched as a potential alternative for ordinary Portland cement concrete (OPCC), with the objective of lowering CO2 emissions while repurposing a large volume of industrial waste by-products. The suitability of using AAMs made up of industrial waste by-products such as blast furnace slag (BFS), calcined clay (metakaolin), and fly ash (FA) was investigated in this study utilizing a performance-based approach that was unaffected by binder chemistry, history, or environmental effect, Binder paste microstructural assessment and influence on engineering effectiveness, including fresh and hardened characteristics of these materials, In the Viewpoints area, we analyze specific premature phase and long-phase performance of AAMs, as well as Upcoming scientific breakthroughs are also discussed in the Viewpoints section.

1.
A.
Researcher
, “
Issue Paper
,”
2019
.
2.
P. J. M.
Monteiro
,
S. A.
Miller
, and
A.
Horvath
, “
Towards sustainable concrete
,”
Nat. Mater.
, vol.
16
, no.
7
, pp.
698
699
,
2017
, doi: .
3.
N.
Serres
,
S.
Braymand
, and
F.
Feugeas
, “
Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment
,”
J. Build. Eng.
, vol.
5
, pp.
24
33
,
2016
, doi: .
4.
F. R.
Arroyo M.
and
L. J.
Miguel
, “
The trends of the energy intensity and CO2 emissions related to final energy consumption in ecuador: Scenarios of national and worldwide strategies
,”
Sustain.
, vol.
12
, no.
1
,
2020
, doi: .
5.
F.
Colangelo
,
A.
Forcina
,
I.
Farina
, and
A.
Petrillo
, “
Life Cycle Assessment (LCA) of different kinds of concrete containing waste for sustainable construction
,”
Buildings
, vol.
8
, no.
5
,
2018
, doi: .
6.
R.
Andrew
, “
Global CO<sub>2</sub> Emissions from Cement Production
,”
Earth Syst. Sci. Data Discuss.
, pp.
195
217
,
2017
, doi: .
7.
D.S.
Vijayan
,
A.
Mohan
,
J.
Revathy
,
D.
Parthiban
,
R.
Varatharajan
, “
Evaluation of the impact of thermal performance on various building bricks and blocks: A review
”,
Environmental Technology & Innovation
23
(
2021
)
101577
, .
8.
Y.
Shan
 et al., “
Data Descriptor: China CO2 emission accounts 1997-2015
,”
Sci. Data
, pp.
1
14
,
1997
, [Online]. Available: www.nature.com/sdata/.
9.
S. A.
Miller
,
V. M.
John
,
S. A.
Pacca
, and
A.
Horvath
, “
Carbon dioxide reduction potential in the global cement industry by 2050
,”
Cem. Concr. Res.
, vol.
114
, no. August, pp.
115
124
,
2018
, doi: .
10.
MoEFCC
, “
India: Third Biennial Update Report to the United Nations Framework Convention on Climate Change
.
Ministry of Environment, Forest and Climate Change, Government of India.
,” pp.
1
501
,
2021
.
11.
J. S. J.
Van Deventer
,
J. L.
Provis
, and
P.
Duxson
, “
Technical and commercial progress in the adoption of geopolymer cement
,”
Miner. Eng.
, vol.
29
, pp.
89
104
,
2012
, doi: .
12.
A.
Attanasio
,
L.
Pascali
,
V.
Tarantino
,
W.
Arena
, and
A.
Largo
, “
Alkali-activated mortars for sustainable building solutions: Effect of binder composition on technical performance
,”
Environ. - MDPI
, vol.
5
, no.
3
, pp.
1
14
,
2018
, doi: .
13.
G.
Samson
,
M.
Cyr
, and
X. X.
Gao
, “
Formulation and characterization of blended alkali-activated materials based on flash-calcined metakaolin, fly ash and GGBS
,”
Constr. Build. Mater.
, vol.
144
, pp.
50
64
,
2017
, doi: .
14.
E.
Hany
,
N.
Fouad
,
M.
Abdel-Wahab
, and
E.
Sadek
, “
Compressive strength of mortars incorporating alkali-activated materials as partial or full replacement of cement
,”
Constr. Build. Mater.
, vol.
261
, p.
120518
,
2020
, doi: .
15.
X. Y.
Zhuang
 et al., “
Fly ash-based geopolymer: Clean production, properties and applications
,”
J. Clean. Prod.
, vol.
125
, pp.
253
267
,
2016
, doi: .
16.
W.
Li
,
Z.
Tang
,
V. W. Y.
Tam
,
X.
Zhao
, and
K.
Wang
, “
A Review on Durability of Alkali-activated System from Sustainable Construction Materials to Infrastructures
,”
ES Mater. Manuf.
,
2020
, doi: .
17.
R. Sanjay
Kumar
,
D.S.
Vijayan
,
P. A. Mubarak
Manzoor
,
N.
Subinjith
and
Stagain
Santhosh
,
Effect of silica fume on the strength of glass fiber incorporated concrete
,
AIP Conference Proceedings
2271
,
030020
(
2020
);
18.
D. M.
Roy
, “
Alkali-activated cements Opportunities and challenges
,” vol.
29
, pp.
249
254
,
1999
.
19.
F.
Pacheco-Torgal
,
J.
Castro-Gomes
, and
S.
Jalali
, “
Alkali-activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products
,”
Construction and Building Materials
, vol.
22
, no.
7
. pp.
1305
1314
,
2008
, doi: .
20.
D.S.
Vijayan
,
J.
Revathy
,
Flexural Response of Fibre Reinforced Polymer Laminated Pre-stressed Concrete Beams
,
Indian Journal of Science and Technology
, Vol
9
(
42
), DOI: , November
2016
.
21.
S.
Sprung
and
J.
Kropp
, “
Cement and Concrete
,”
Ullmann”s Encycl. Ind. Chem.
,
2001
, doi: .
22.
ACI 233
, “
ACI 233R-03. Slag Cement in Concrete and Mortar
,”
Am. Concr. Inst.
, pp.
1
19
,
2003
.
23.
Kawalec
J.
,
Grygierek
M.
,
Koda
E.
,
Osinski
P.
2019
.
Lessons learned on geosynthetics applications in road structures in Silesia mining region in Poland
.
Applied Sciences.
Vol.
9
(
6
), no.
1122
; doi:.
Kuhl
, “
Slag cement and process of making the same. US Patent 900,939
,”
1930
, [Online]. Available: https://patentimages.storage.googleapis.com/01/6d/9c/e419a866806506/US900939.pdf.
24.
J.
Davidovits
, “
Mineral polymers and methods od making them
,” pp.
1
6
,
1982
.
25.
T. J.
Klemp
and
G. D.
Scott
, “
United States Patent (19
),”
no.
19
, pp.
151
154
,
1996
.
26.
Skutnik
Z.
,
Sobolewski
M.
,
Koda
E.
2020
.
An experimental assessment of the water permeability of concrete with a superplasticiser and admixtures. Materials.
Vol.
13
(
24
), no.
5624
; .
Davidovits
, “
Geopolymers
,”
J. Therm. Anal.
, vol.
37
, no.
8
, pp.
1633
1656
,
1991
, doi: .
27.
J. G. S.
Van Jaarsveld
and
J. S. J.
Van Deventer
, “
Effect of metal contaminants on the formation and properties of waste-based geopolymers
,”
Cem. Concr. Res.
, vol.
29
, no.
8
, pp.
1189
1200
,
1999
, doi: .
28.
J. G. S.
Van Jaarsveld
,
J. S. J.
Van Deventer
, and
L.
Lorenzeni
, “
the Potential Use of Geopolymeric Materials To Immobilise Toxic Metals: Part I. Theory and Applications
,”
Miner. Eng.
, vol.
10
, no.
7
, pp.
659
669
,
1997
.
29.
J. G. S.
Van Jaarsveld
,
J. S. J.
Van Deventer
, and
A.
Schwartzman
, “
The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics
,”
Miner. Eng.
, vol.
12
, no.
1
, pp.
75
91
,
1999
, doi: .
30.
F. J.
Silva
and
C.
Thaumaturgo
, “
Fibre reinforcement and fracture response in geopolymeric mortars
,”
Fatigue Fract. Eng. Mater. Struct.
, vol.
26
, no.
2
SPEC., pp.
167
172
,
2003
, doi: .
31.
D. P.
Dias
and
C.
Thaumaturgo
, “
Fracture toughness of geopolymeric concretes reinforced with basalt fibers
,”
Cem. Concr. Compos.
, vol.
27
, no.
1
, pp.
49
54
,
2005
, doi: .
32.
F.
Puertas
,
R.
De Gutierrez
,
A.
Fernández-Jiménez
,
S.
Delvasto
, and
J.
Maldonado
, “
Alkaline cement mortars. Chemical resistance to sulfate and seawater attack
,”
Mater. Constr.
, vol.
2002
, no.
267
, pp.
55
71
,
2002
, doi: .
33.
E.
Rodríguez
,
S.
Bernal
,
R. Mejía
De Gutiérrez
, and
F.
Puertas
, “
Hormigón alternativo basado en escorias activadas alcalinamente
,”
Mater. Constr.
, vol.
58
, no.
291
, pp.
53
67
,
2008
, doi: .
34.
S. A.
Bernal
,
R. Mejía
De Gutiérrez
,
A. L.
Pedraza
,
J. L.
Provis
,
E. D.
Rodriguez
, and
S.
Delvasto
, “
Effect of binder content on the performance of alkali-activated slag concretes
,”
Cem. Concr. Res.
, vol.
41
, no.
1
, pp.
1
8
,
2011
, doi: .
35.
J. I.
Escalante-García
,
A. V.
Gorokhovsky
,
G.
Mendoza
, and
A. F.
Fuentes
, “
Effect of geothermal waste on strength and microstructure of alkali-activated slag cement mortars
,”
Cem. Concr. Res.
, vol.
33
, no.
10
, pp.
1567
1574
,
2003
, doi: .
36.
J. I. Escalante
García
,
K.
Campos-Venegas
,
A.
Gorokhovsky
, and
A.
Fernández
, “
Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: Effect of Na2O concentration and modulus
,”
Adv. Appl. Ceram.
, vol.
105
, no.
4
, pp.
201
-
208
,
2006
, doi: .
37.
A. K.
Chatterjee
, “
Indian fly ashes, their characteristics, and potential for mechano-chemical activation for enhanced usability
,”
2nd Int. Conf. Sustain. Constr. Mater. Technol
., no. JUNE, pp.
41
51
,
2010
, doi: .
38.
P.
Kumar
and
S. K.
Kaushik
, “
Some trends in the use of concrete: Indian scenario
,”
Indian Concr. J.
, vol.
77
, no.
12
, pp.
1503
1508
,
2003
.
39.
O. F.
Reactivity
and
O. F.
Fly
, “
National Council for Cement and Building Materials M-10, NDSE-II, New Delhi - ii0 049
,” vol.
23
, no.
I
, pp.
41
45
,
1993
.
40.
S.
Kumar
,
R.
Kumar
,
T. C.
Alex
,
A.
Bandopadhyay
, and
S. P.
Mehrotra
, “
Influence of reactivity of fly ash on geopolymerisation
,”
Adv. Appl. Ceram.
, vol.
106
, no.
3
, pp.
120
127
,
2007
, doi: .
41.
R.
Kumar
,
S.
Kumar
, and
S. P.
Mehrotra
, “
Towards sustainable solutions for fly ash through mechanical activation
,”
Resour. Conserv. Recycl.
, vol.
52
, no.
2
, pp.
157
179
,
2007
, doi: .
42.
S.
Kumar
,
D.
Sahoo
,
S.
Nath
,
T.
Alex
, and
R.
Kumar
, “
From Grey Waste to Green Geopolymer
,”
Sci. Cult.
, vol.
78
(
11-12
), pp.
511
516
,
2012
.
43.
K.
Srinivasan
and
A.
Sivakumar
, “
Geopolymer Binders: A Need for Future Concrete Construction
,”
ISRN Polym. Sci.
, vol.
2013
, pp.
1
8
,
2013
, doi: .
44.
R. H. Abdul
Rahim
,
T.
Rahmiati
,
K. A.
Azizli
,
Z.
Man
,
M. F.
Nuruddin
, and
L.
Ismail
, “
Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties
,”
Mater. Sci. Forum
, vol.
803
, pp.
179
184
,
2015
, doi: .
45.
S. K. U.
Rehman
 et al., “
Experimental investigation of NaOH and KOH Mixture in SCBA-based geopolymer cement composite
,”
Materials (Basel)
., vol.
13
, no.
15
, pp.
1
28
,
2020
, doi: .
46.
L. V.
Gurvich
,
G. A.
Bergman
,
L. N.
Gorokhov
,
V. S.
Iorish
,
V. Y.
Leonidov
, and
V. S.
Yungman
, “
Thermodynamic properties of alkali metal hydroxides. Part 1. Lithium and sodium hydroxides
,”
J. Phys. Chem. Ref. Data
, vol.
25
, no.
4
, pp.
1211
1275
,
1996
, doi: .
47.
C.
Shi
, “
Strength, pore structure and permeability of alkali-activated slag mortars
,”
Cem. Concr. Res.
, vol.
26
, no.
12
, pp.
1789
1799
,
1996
, doi: .
48.
G.
Görhan
and
G.
Kürküil
, “
The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures
,”
Compos. Part B Eng.
, vol.
58
, pp.
371
377
,
2014
, doi: .
49.
J. L.
Provis
, “
Activating solution chemistry for geopolymers
,”
Geopolymers Struct. Process. Prop. Ind. Appl.
, pp.
50
71
,
2009
, doi: .
50.
J. L.
Provis
and
J. S. J.
Van Deventer
,
Geopolymers and other alkali-activated materials
, 5th ed.
Elsevier Ltd
.,
2019
.
51.
E. Najafi
Kani
,
A.
Allahverdi
, and
J. L.
Provis
, “
Efflorescence control in geopolymer binders based on natural pozzolan
,”
Cem. Concr. Compos.
, vol.
34
, no.
1
, pp.
25
33
,
2012
, doi: .
52.
F.
Colangelo
 et al., “
Thermal cycling stability of fly ash based geopolymer mortars
,”
Compos. Part B Eng.
, vol.
129
, pp.
11
17
,
2017
, doi: .
53.
R.
Tänzer
,
Y.
Jin
, and
D.
Stephan
, “
Alkali activated slag binder: effect of cations from silicate activators
,”
Mater. Struct. Constr.
, vol.
50
, no.
1
,
2017
, doi: .
54.
C. T. G.
Knight
,
R. J.
Balec
, and
S. D.
Kinrade
, “
The structure of silicate anions in aqueous alkaline solutions
,”
Angew. Chemie - Int. Ed.
, vol.
46
, no.
43
, pp.
8148
8152
,
2007
, doi: .
55.
J. L.
Provis
and
J. S. J.
van Deventer
, “
Geopolymerisation kinetics. 2. Reaction kinetic modelling
,”
Chem. Eng. Sci.
, vol.
62
, no.
9
, pp.
2318
2329
,
2007
, doi: .
56.
M.
Torres-Carrasco
,
C.
Rodriguez-Puertas
,
M. Del Mar
Alonso
, and
F.
Puertas
, “
Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour
,”
Bol. la Soc. Esp. Ceram. y Vidr.
, vol.
54
, no.
2
, pp.
45
57
,
2015
, doi: .
57.
R. J.
Myers
,
S. A.
Bernal
,
R. S.
Nicolas
, and
J. L.
Provis
, “
Generalized Structural Description of Calcium - Sodium Aluminosilicate Hydrate Gels : The Cross-Linked Substituted Tobermorite Model
,”
2013
.
58.
F.
Puertas
,
M.
Palacios
,
H.
Manzano
,
J. S.
Dolado
,
A.
Rico
, and
J.
Rodriguez
, “
A model for the C-A-S-H gel formed in alkali-activated slag cements
,”
J. Eur. Ceram. Soc.
, vol.
31
, no.
12
, pp.
2043
2056
,
2011
, doi: .
59.
J. I.
Escalante-García
,
A. F.
Fuentes
,
A.
Gorokhovsky
,
P. E.
Fraire-Luna
, and
G.
Mendoza-Suarez
, “
Hydration products and reactivity of blast-furnace slag activated by various alkalis
,”
J. Am. Ceram. Soc.
, vol.
86
, no.
12
, pp.
2148
2153
,
2003
, doi: .
60.
M.
Ben Haha
,
G.
Le Saout
,
F.
Winnefeld
, and
B.
Lothenbach
, “
Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags
,”
Cem. Concr. Res.
, vol.
41
, no.
3
, pp.
301
310
,
2011
, doi: .
61.
Z.
Tian
,
Q.
Yang
,
K.
Guan
,
J.
Meng
, and
Z.
Cao
, “
Microstructure and mechanical properties of a peak-aged
,” vol.
731
, pp.
704
713
,
2018
.
62.
W.
Chen
and
H. J. H.
Brouwers
, “
Alkali binding in hydrated Portland cement paste
,”
Cem. Concr. Res.
, vol.
40
, no.
5
, pp.
716
722
,
2010
, doi: .
63.
S. Y.
Hong
and
F. P.
Glasser
, “
Alkali binding in cement pastes : Part I. The C-S-H phase
,”
Cem. Concr. Res.
, vol.
29
, no.
12
, pp.
1893
1903
,
1999
, doi: .
64.
M. D.
Jackson
 et al., “
Material and elastic properties of Al-tobermorite in ancient roman seawater concrete
,”
J. Am. Ceram. Soc.
, vol.
96
, no.
8
, pp.
2598
2606
,
2013
, doi: .
65.
S. A.
Bernal
,
R. San
Nicolas
,
J. L.
Provis
,
R. Mejía
De Gutiérrez
, and
J. S. J.
Van Deventer
, “
Natural carbonation of aged alkali-activated slag concretes
,”
Mater. Struct. Constr.
, vol.
47
, no.
4
, pp.
693
707
,
2014
, doi: .
66.
S.
Çelikten
,
M.
Sarndemir
, and
İ. Özgür
Deneme
, “
Mechanical and microstructural properties of alkali-activated slag and slag+fly ash mortars exposed to high temperature
,”
Constr. Build. Mater.
, vol.
217
, pp.
50
61
,
2019
, doi: .
67.
M.
Shariati
 et al., “
Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics
,”
Constr. Build. Mater.
, vol.
267
, p.
120886
,
2021
, doi: .
68.
M.
Karatas
,
M.
Dener
,
M.
Mohabbi
, and
A.
Benli
, “
A study on the compressive strength and microstructure characteristic of alkali-activated metakaolin cement
,”
Rev. Mater.
, vol.
24
, no.
4
,
2019
, doi: .
69.
G. W.
BRINDLEY
and
M.
NAKAHIRA
, “
The Kaolinite-Mullite Reaction Series: II, Metakaolin
,”
J. Am. Ceram. Soc.
, vol.
42
, no.
7
, pp.
314
318
,
1959
, doi: .
70.
M. L.
Granizo
,
M. T.
Blanco-Varela
, and
A.
Palomo
, “
Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry
,”
J. Mater. Sci.
, vol.
35
, no.
24
, pp.
6309
6315
,
2000
, doi: .
71.
S.
Lee
,
Y. J.
Kim
, and
H. S.
Moon
, “
Energy-filtering transmission electron microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 A modulation
,”
J. Am. Ceram. Soc.
, vol.
86
, no.
1
, pp.
174
176
,
2003
, doi: .
72.
A.
Fernández-Jiménez
,
A.
Palomo
, and
M.
Criado
, “
Microstructure development of alkali-activated fly ash cement: A descriptive model
,”
Cem. Concr. Res.
, vol.
35
, no.
6
, pp.
1204
1209
,
2005
, doi: .
73.
M. L.
Kumar
and
V.
Revathi
, “
Microstructural Properties of Alkali-Activated Metakaolin and Bottom Ash Geopolymer
,”
Arab. J. Sci. Eng.
, vol.
45
, no.
5
, pp.
4235
4246
,
2020
, doi: .
74.
M.
Kamath
,
S.
Prashant
, and
M.
Kumar
, “
Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics
,”
Constr. Build. Mater.
, vol.
277
, p.
122323
,
2021
, doi: .
75.
S. A.
Bernal
,
J. L.
Provis
,
V.
Rose
, and
R. Mejía
De Gutierrez
, “
Evolution of binder structure in sodium silicate-activated slag-metakaolin blends
,”
Cem. Concr. Compos.
, vol.
33
, no.
1
, pp.
46
54
,
2011
, doi: .
76.
D.
Parthiban
,
D. S.
Vijayan
,
R. Sanjay
Kumar
 et al.,
Performance evaluation of Fly ash based GPC with partial replacement of RHA as a cementitious material
,
Materials Today: Proceedings
,
77.
R. Sanjay
Kumar
,
D.S.
Vijayan
,
P. A. Mubarak
Manzoor
,
N.
Subinjith
and
Stagain
Santhosh
,
Effect of silica fume on the strength of glass fiber incorporated concrete
,
AIP Conference Proceedings
2271
,
030020
(
2020
);
78.
Saloni
,
A.
Singh
,
V.
Sandhu
, Jatin, and Parveen, “
Effects of alccofine and curing conditions on properties of low calcium fly ash-based geopolymer concrete
,”
Mater. Today Proc.
, vol.
32
, pp.
620
625
,
2020
, doi: .
79.
I.
Wilińska
and
B.
Pacewska
, “
Comparative investigation of reactivity of different kinds of fly ash in alkaline media
,”
J. Therm. Anal. Calorim.
, vol.
138
, no.
6
, pp.
3857
3872
,
2019
, doi: .
80.
J. S. J.
van Deventer
,
R. S.
Nicolas
,
I.
Ismail
,
S. A.
Bernal
,
D. G.
Brice
, and
J. L.
Provis
, “
Microstructure and durability of alkali-activated materials as key parameters for standardization
,”
J. Sustain. Cem. Mater.
, vol.
4
, no.
2
, pp.
116
128
,
2014
, doi: .
81.
J. L.
Provis
, “
Cement and Concrete Research Alkali-activated materials
,”
Cem. Concr. Res.
, vol.
114
, pp.
40
48
,
2018
, doi: .
82.
G.
Habert
and
C.
Ouellet-Plamondon
, “
Recent update on the environmental impact of geopolymers
,”
RILEM Tech. Lett.
, vol.
1
, p.
17
,
2016
, doi: .
83.
G.
Habert
,
J. B. D’Espinose
De Lacaillerie
, and
N.
Roussel
, “
An environmental evaluation of geopolymer based concrete production: Reviewing current research trends
,”
J. Clean. Prod.
, vol.
19
, no.
11
, pp.
1229
1238
,
2011
, doi: .
84.
M.
Fawer
,
M.
Concannon
, and
W.
Rieber
, “
Life cycle inventories for the production of sodium silicates
,”
Int. J. Life Cycle Assess.
, vol.
4
, no.
4
, pp.
207
212
,
1999
, doi: .
85.
A. J.
Moseson
,
D. E.
Moseson
, and
M. W.
Barsoum
, “
High volume limestone alkali-activated cement developed by design of experiment
,”
Cem. Concr. Compos.
, vol.
34
, no.
3
, pp.
328
336
,
2012
, doi: .
86.
A. A.
Shahmansouri
,
H. Akbarzadeh
Bengar
, and
H.
AzariJafari
, “
Life cycle assessment of eco-friendly concrete mixtures incorporating natural zeolite in sulfate-aggressive environment
,”
Constr. Build. Mater.
, vol.
268
, p.
121136
,
2021
, doi: .
87.
D. A.
Salas
,
A. D.
Ramirez
,
N.
Ulloa
,
H.
Baykara
, and
A. J.
Boero
, “
Life cycle assessment of geopolymer concrete
,”
Constr. Build. Mater.
, vol.
190
, pp.
170
177
,
2018
, doi: .
88.
V.
Shobeiri
,
B.
Bennett
,
T.
Xie
, and
P.
Visintin
, “
A comprehensive assessment of the global warming potential of geopolymer concrete
,”
J. Clean. Prod.
, vol.
297
, p.
126669
,
2021
, doi: .
89.
N.
Thonemann
,
A.
Schulte
, and
D.
Maga
, “
How to conduct prospective life cycle assessment for emerging technologies? A systematic review and methodological guidance
,”
Sustain.
, vol.
12
, no.
3
, pp.
1
23
,
2020
, doi: .
90.
S. H.
Teh
,
T.
Wiedmann
,
A.
Castel
, and
J.
de Burgh
, “
Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia
,”
J. Clean. Prod.
, vol.
152
, pp.
312
320
,
2017
, doi: .
91.
I.
Muñoz
 et al., “
Life cycle assessment of integrated additive-subtractive concrete 3D printing
,”
Int. J. Adv. Manuf. Technol.
, pp.
2149
2159
,
2021
, doi: .
92.
D S
Vijayan
,
S.
Arvindan
,
D.
Parthiban
,
B.
Saravanan
,
M
Kalpana
, “
Natural aggregates used for Light weight concrete -A Review
”,
IOP Conf. Series: Materials Science and Engineering
993
(
2020
)
012042
, doi:
93.
M.
Tholkapiyan
,
A.
Mohan
,
Vijayan
.
D.S
, “
A survey of recent studieson chlorophyll variation in Indian coastal waters
”,
IOP Conf. Series: Materials Science and Engineering
993
(
2020
)
012041
, doi:
94.
R.
GOPLALAKRISHNAN
,
A.
MOHAN
,
L.
PONRAJSANKAR
,
D. S.
VIJAYAN
, “
CHARACTERISATION ON TOUGHNESS PROPERTY OF SELF-COMPACTING FIBRE REINFORCED CONCRETE
”,
Journal of Environmental Protection and Ecology 21
, No
6
,
2153
2163
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.