Article PDF first page preview

Article PDF first page preview
1.
W.
Gautschi
, “
Numerical integration of ordinary differential equations based on trigonometric polynomials
,”
Numer. Math.
3
,
381
397
(
1961
).
2.
R. M.
Corless
,
C.
Essex
, and
M. A.
Nerenberg
, “
Numerical methods can suppress chaos
,”
Physics Letters A
157
,
27
36
(
1991
).
3.
K.
Djidjeli
,
Z.
Guan
,
W.
Price
, and
E.
Twizell
, “
Explicit finite-difference methods for non-linear dynamic systems: Froude’s pendulum
,”
Computer Methods in Applied Mechanics and Engineering
135
,
243
264
(1996).
4.
A. S.
de Markus
, “
Detection of the onset of numerical chaotic instabilities by lyapunov exponents
,”
Discrete Dynamics in Nature and Society
6
,
8
(
2001
).
5.
C.
Varsakelis
and
P.
Anagnostidis
, “
On the susceptibility of numerical methods to computational chaos and superstability
,”
Communications in Nonlinear Science and Numerical Simulation
33
,
118
132
(
2016
).
6.
J. D.
Skufca
, “
Analysis Still Matters: A Surprising Instance of Failure of Runge–Kutta–Felberg ODE Solvers
,”
SIAM Review
46
,
729
737
(
2004
).
7.
R.
Corless
, “
What good are numerical simulations of chaotic dynamical systems?
Computers & Mathematics with Applications
28
,
107
121
(
1994
).
8.
E. G.
Nepomuceno
,
S. A.
Martins
,
B. C.
Silva
,
G. F.
Amaral
, and
M.
Perc
, “
Detecting unreliable computer simulations of recursive functions with interval extensions
,”
Applied Mathematics and Computation
329
,
408
419
(
2018
).
9.
A. D.
Pano-Azucena
,
E.
Tlelo-Cuautle
,
G.
Rodriguez-Gomez
, and
L. G. de la
Fraga
, “
FPGA-based implementation of chaotic oscillators by applying the numerical method based on trigonometric polynomials
,”
AIP Advances
8
,
75217
(
2018
).
10.
G.
Chen
and
T.
Ueta
, “
Yet another chaotic attractor
,”
International Journal of Bifurcation and Chaos
09
,
1465
1466
(
1999
).
11.
L.
Chua
,
M.
Komuro
, and
T.
Matsumoto
, “
The double scroll family
,”
IEEE Transactions on Circuits and Systems
33
,
1072
1118
(
1986
).
12.
R.
Trejo-Guerra
,
E.
Tlelo-Cuautle
,
V.
Carbajal-Gómez
, and
G.
Rodriguez-Gómez
, “
A survey on the integrated design of chaotic oscillators
,”
Applied Mathematics and Computation
219
,
5113
5122
(
2013
).
13.
E. N.
Lorenz
, “
Deterministic Nonperiodic Flow
,”
Journal of the Atmospheric Sciences
20
,
130
141
(
1963
).
14.
O.
Rössler
, “
An equation for continuous chaos
,”
Physics Letters A
57
,
397
398
(
1976
).
15.
J. D.
Lambert
,
Computational Methods in Ordinary Differential Equations
(
John Willy & Sons Ltd„
1973
).
16.
L. F.
Shampine
,
H. A.
Watts
, and
S. M.
Davenport
, “
Solving non-stiff ordinary differential equations - the state of the art
,”
SIAM Review
18
,
376
411
(
1976
).
17.
E.
Hairer
and
G.
Wanner
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems Problem
(
Springer
,
1991
).
18.
L.
Shampine
and
L.
Gordon
,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
(
Freeman
,
1975
).
19.
R.
Hegger
,
H.
Kantz
,
T.
Schreiber
, and
E.
Olbrich
, “
Tisean 3.0.1: Nonlinear time series analysis
,” [Online] (
2007
), last accessed 2020-06-06.
This content is only available via PDF.
You do not currently have access to this content.