The Optimal Homotopy Asymptotic Method (OHAM) is utilised in this study of parametrical resonance for harvesting energy from low-frequency oscillations. Nonlinear differential equation describes pendulum-type architecture with electromagnetic induction as the energy conservation mechanism. Our technique leads to a high accuracy of the approximate analytical solutions in comparison with the numerical results.

1.
S.
Byrne
,
D.
Diamond
,
Nature Materials
,
5
,
421
424
(
2006
)
2.
C.
Williams
,
R.
Yates
,
Sensors and Actuators A: Physical
,
52
,
8
11
(
1996
)
3.
H.
Sodano
,
D.
Inman
,
J. of Inteligent Material Systems and Structures
,
16
,
799
-
807
(
2005
)
4.
J.
Scruggs
,
P.
Jacob
,
Science
323
,
1176
1178
(
2009
)
5.
K.
Kecik
,
J.
Warminski
,
Mathematical Problems in Engineering
,
451047
(
2011
)
6.
T.
Fossen
,
H.
Nijmeier
,
Parametric resonnce in dynmical systems
(
Springer
,
Berlin
,
2012
)
7.
Y.S.
Hamed
,
Int. J. Appl. Eng. Research
11
,
1443
1452
(
2016
)
8.
V.
Marinca
,
N.
Herisanu
,
Centr. Eur. J. Phys
,
9
,
891
895
(
2011
)
9.
N.
Herisanu
,
V.
Marinca
,
Mathematics
8
,
1083
(
2020
)
10.
N.
Herisanu
,
V.
Marinca
,
G.
Madescu
,
AIP Conf. Proc.
1863
,
46002
(
2017
)
11.
N.
Herisanu
,
V.
Marinca
,
MATEC Web of Conferences
,
148
,
13003
(
2018
)
12.
J.W.
Ma
,
H.
Zhang
,
N.S.
Xu
,
Mechanical Syst. and Signal Processing
28
,
323
332
(
2012
)
This content is only available via PDF.
You do not currently have access to this content.