The Optimal Homotopy Asymptotic Method (OHAM) is utilised in this study of parametrical resonance for harvesting energy from low-frequency oscillations. Nonlinear differential equation describes pendulum-type architecture with electromagnetic induction as the energy conservation mechanism. Our technique leads to a high accuracy of the approximate analytical solutions in comparison with the numerical results.
REFERENCES
1.
S.
Byrne
, D.
Diamond
, Nature Materials
, 5
, 421
–424
(2006
)2.
C.
Williams
, R.
Yates
, Sensors and Actuators A: Physical
, 52
, 8
–11
(1996
)3.
H.
Sodano
, D.
Inman
, J. of Inteligent Material Systems and Structures
, 16
, 799
-807
(2005
)4.
J.
Scruggs
, P.
Jacob
, Science
323
, 1176
–1178
(2009
)5.
6.
T.
Fossen
, H.
Nijmeier
, Parametric resonnce in dynmical systems
(Springer
, Berlin
, 2012
)7.
8.
9.
N.
Herisanu
, V.
Marinca
, Mathematics
8
, 1083
(2020
)10.
11.
N.
Herisanu
, V.
Marinca
, MATEC Web of Conferences
, 148
, 13003
(2018
)12.
J.W.
Ma
, H.
Zhang
, N.S.
Xu
, Mechanical Syst. and Signal Processing
28
, 323
–332
(2012
)
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)
You do not currently have access to this content.