Using the semi-discretization method, a discrete-time counterpart of a neutral-type Cohen-Grossberg neural network with time-varying delays and impulses is constructed. Sufficient conditions for the existence of a periodic solution of the discrete-time system thus obtained are found by using the continuation theorem of coincidence degree theory.

1.
R. P.
Agarwal
and
S. R.
Grace
,
Math. Comput. Model.
31
,
9
15
(
2000
).
2.
H.
Akça
,
E.
Al-Zahrani
,
V.
Covachev
,
Z.
Covacheva
,
Int. J. Appl. Math. Stat.
57
,
154
166
(
2018
).
3.
S.
Arik
,
Z.
Orman
,
Phys. Lett. A
341
,
410
421
(
2005
).
4.
A.
Bellen
,
N.
Guglielmi
and
A. E.
Ruehli
,
IEEE Trans. Circuits Systems I, Fund. Theory Appl.
46
,
212
215
(
1999
).
5.
A.
Berman
and
R. J.
Plemmons
, “Nonnegative Matrices in Mathematical Sciences,”
Academic Press
,
New York
,
1979
.
6.
Z.
Chen
and
J.
Ruan
,
Phys. Lett. A
345
,
101
111
(
2005
).
7.
M.
Cohen
and
G.
Grossberg
,
IEEE Trans. Systems Man Cybernet.
13
,
815
821
(
1983
).
8.
V.
Covachev
,
H.
Akça
and
M.
Sarr
,
Neural Parallel Sci. Computs.
19
,
345
360
(
2011
).
9.
R. E.
Gaines
and
J. L.
Mawhin
, “Coincidence Degree and Nonlinear Differential Equations,”
Springer-Verlag
,
Berlin
,
1977
.
10.
S.
Mohamad
,
H.
Akça
and
V.
Covachev
,
Tatra Mt. Math. Publ.
43
,
145
161
(
2009
).
11.
Q.
Song
and
J.
Cao
,
IEEE Trans. Systems Man Cybernet. Part B
37
,
733
741
(
2007
).
12.
Z.
Wang
,
J.
Lam
and
K. J.
Burnham
,
IEEE Trans. Autom. Control
47
,
478
483
(
2002
).
13.
Z.
Yang
and
D.
Xu
,
Appl. Math. Comput.
177
,
63
78
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.