Using the semi-discretization method, a discrete-time counterpart of a neutral-type Cohen-Grossberg neural network with time-varying delays and impulses is constructed. Sufficient conditions for the existence of a periodic solution of the discrete-time system thus obtained are found by using the continuation theorem of coincidence degree theory.
Topics
Artificial neural networks
REFERENCES
1.
R. P.
Agarwal
and S. R.
Grace
, Math. Comput. Model.
31
, 9
–15
(2000
).2.
H.
Akça
, E.
Al-Zahrani
, V.
Covachev
, Z.
Covacheva
, Int. J. Appl. Math. Stat.
57
, 154
–166
(2018
).3.
S.
Arik
, Z.
Orman
, Phys. Lett. A
341
, 410
–421
(2005
).4.
A.
Bellen
, N.
Guglielmi
and A. E.
Ruehli
, IEEE Trans. Circuits Systems I, Fund. Theory Appl.
46
, 212
–215
(1999
).5.
A.
Berman
and R. J.
Plemmons
, “Nonnegative Matrices in Mathematical Sciences,” Academic Press
, New York
, 1979
.6.
Z.
Chen
and J.
Ruan
, Phys. Lett. A
345
, 101
–111
(2005
).7.
M.
Cohen
and G.
Grossberg
, IEEE Trans. Systems Man Cybernet.
13
, 815
–821
(1983
).8.
9.
R. E.
Gaines
and J. L.
Mawhin
, “Coincidence Degree and Nonlinear Differential Equations,” Springer-Verlag
, Berlin
, 1977
.10.
11.
Q.
Song
and J.
Cao
, IEEE Trans. Systems Man Cybernet. Part B
37
, 733
–741
(2007
).12.
Z.
Wang
, J.
Lam
and K. J.
Burnham
, IEEE Trans. Autom. Control
47
, 478
–483
(2002
).13.
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)
You do not currently have access to this content.