A conformal mapping function that maps a multiply connected region onto a unit disk is known as the Ahlfors map. It reduces to the Riemann map for a simply connected region. The Ahlfors map can be expressed in terms of the Szego kernel. The Szego kernel is a unique solution to a second-kind Fredholm integral equation. The Ahlfors map and the Szego kernel have the same zeros. There is no known explicit formula for the zeros of the Ahlfors map for doubly connected regions except for the annulus region. For general doubly connected regions, the zeros of the Ahlfors map must be computed numerically. This paper shows how to determine the zeros of the Ahlfors map numerically for any doubly connected regions with smooth boundaries. The numerical examples and comparisons are also presented.

1.
T. J.
Tegtmeyer
,
The Ahlfors Map and Szegö Kernel in Multiply Connected Domains
, Ph.D. thesis,
Purdue University
(
1998
).
2.
T. J.
Tegtmeyer
and
A. D.
Thomas
,
Rocky Mountain Journal of Mathematics
29
,
709
723
(
1999
).
3.
N.
Kerzman
and
E. M.
Stein
,
Mathematische Annalen
236
,
85
93
(
1978
).
4.
N.
Kerzman
and
M. R.
Trummer
,
Journal of Computational and Applied Mathematics
14
,
111
123
(
1986
).
5.
M. R.
Trummer
,
SIAM Journal on Numerical Analysis
23
,
853
872
(
1986
).
6.
A. H. M.
Murid
and
M. R. M.
Razali
,
MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics
15
,
79
93
(
1999
).
7.
M. M. S.
Nasser
and
A. H. M.
Murid
,
Clifford Analysis, Clifford Algebras and their Applications
2
,
307
312
(
2013
).
8.
K.
Nazar
,
A. H. M.
Murid
, and
A. W. K.
Sangawi
, “Some integral equations related to the Ahlfors map for multiply connected regions,” in
AIP Conference Proceedings
, Vol.
1691
(
AIP Publishing LLC
,
2015
) p.
040021
.
9.
K.
Nazar
,
A. H. M.
Murid
, and
A. W. K.
Sangawi
,
Jurnal Teknologi
73
,
1
9
(
2015
).
10.
K.
Nazar
,
A. W. K.
Sangawi
,
A. H. M.
Murid
, and
Y. S.
Hoe
, “The computation of zeros of Ahlfors map for doubly connected regions,” in
AIP Conference Proceedings
, Vol.
1750
(
AIP Publishing LLC
,
2016
) p.
020007
.
11.
K.
Nazar
,
A. H. M.
Murid
, and
A. W. K.
Sangawi
, “The computation of zeros of Ahlfors map for multiply connected regions,” in
AIP Conference Proceedings
, Vol.
1795
(
AIP Publishing LLC
,
2017
) p.
020003
.
12.
N. H. A. A.
Wahid
,
A. H. M.
Murid
, and
M. I.
Muminov
,
Journal of Mathematics
Art. ID 6961476,
1
11
(
2019
).
13.
S. R.
Bell
,
The Cauchy Transform, Potential theory and Conformal Mapping
(
CRC press
,
2015
).
14.
P. J.
Davis
and
P.
Rabinowitz
,
Methods of Numerical Integration
(
Academic Press
,
2014
).
15.
R.
Wegmann
, “Methods for numerical conformal mapping,” in
Handbook of Complex Analysis: Geometric Function Theory
, Vol.
2
, edited by
R.
Kühnau
(
Elsevier
,
Amsterdam
,
2005
) p.
351
477
.
16.
R.
Wegmann
and
M. M.
Nasser
,
Journal of Computational and Applied Mathematics
214
,
36
57
(
2008
).
17.
A. H. M.
Murid
,
M. M.
Alagele
, and
M. M.
Nasser
,
Malaysian Journal of Fundamental and Applied Sciences
9
,
161
166
(
2013
)
This content is only available via PDF.
You do not currently have access to this content.