As it is known, the linear rational finite difference (LRFD) method has the advantage of its excellent stability, and the Successive Over-Relaxation (SOR) method has the advantage of fast convergence rate due to the flexible choice of parameter. In this paper, in order to make full use of the advantages of LRFD and SOR methods, the composite trapezoidal (CT) quadrature scheme is combined with the 3-point linear rational finite difference (3LRFD) method (CT-3LRFD) to discretize the first-order linear Fredholm integro-differential equation and produce the approximation equation. Furthermore, the SOR method is extended to be the refinement of Successive Over-Relaxation (RSOR) method which then used to solve the numerical solution of the generated linear systems. At the same time, for the sake of comparison, the classical Gauss-Seidel (GS) and Successive Over-Relaxation (SOR) methods are also introduced as the control method. In the end, through several numerical examples, the three parameters of the number of iterations, the execution time and the maximum absolute error are displayed, which fully illustrate that the RSOR method is competitive with existing GS and SOR methods in solving large dense linear system generated by the CT-3LRFD formula.

1.
V.
Lakshmikantham
and
M. R. M.
Rao
,
Theory of integro-differential equations
(
Gordon and Breach Science
,
USA
,
1995
).
2.
D. S.
Dzhumabaev
,
Journal of Computational and Applied Mathematics
294
,
342
357
(
2016
).
3.
S. Y.
Reutskiy
,
Journal of Computational and Applied Mathematics
296
,
724
738
(
2016
).
4.
N.
Rohaninasab
,
K.
Maleknejad
and
R.
Ezzati
,
Applied Mathematics and Computation
328
,
171
188
(
2018
).
5.
A. I.
Fairbairn
and
M. A.
Kelmanson
,
International Journal of Mechanical Sciences
150
,
755
766
(
2019
).
6.
E.
Hesameddini
and
M.
Shahbazi
,
Applied Numerical Mathematics
136
,
122
138
(
2019
).
7.
F.
Saemi
,
H.
Ebrahimi
and
M.
Shafiee
,
Journal of Computational and Applied Mathematics
374
,
112773
(
2020
).
8.
J.
Chen
, He and
M. F. Y.
Huang
,
Journal of Computational and Applied Mathematics
364
,
112352
(
2020
).
9.
J. P.
Berrut
and
L. N.
Trefethen
,
Society for Industrial and Applied Mathematics
46
,
501
517
(
2004
).
10.
M. S.
Floater
and
K.
Hormann
,
Numer. Math.
107
,
315
331
(
2007
).
11.
J. P.
Berrut
,
M. S.
Floaterand
, and
G.
Klein
,
Applied Numerical Mathematics
61
,
989
1000
(
2011
).
12.
J. P.
Berrut
and
G.
Klein
,
Journal of Computational and Applied Mathematics
259
,
95
107
(
2014
).
13.
A.
Abdi
and
S. A.
Hosseini
,
SIAM, J. Sci. Comput
40
,
A1936
A1960
(
2018
).
14.
A.
Abdi
,
S. A.
Hosseini
and
H.
Podhaisky
,
Journal of Computational and Applied Mathematic
357
,
204
214
(
2019
).
15.
A.
Abdi
,
S. A.
Hosseini
and
H.
Podhaisky
,
Numerical Algorithms.
85
,
867
886
(
2019
).
16.
V. B. K.
Vatti
and
T. K.
Eneyew
,
Int. J. Contemp. Math. Sciences
6
,
117
121
(
2011
).
17.
V. B. K.
Vatti
,
S.
Dominic
, and
Sahanica
,
International Journal of Adcanced Information Science and Technology
40
,
1
4
(
2015
).
18.
M. M.
Xu
,
J.
Sulaiman
and
L. H.
Ali
,
Lecture Notes in Electrical Engineering
,
724
,
463
474
(
2021
).
19.
M. K. M.
Akhir
,
M.
Othman
,
J.
Sulaiman
,
Z. A.
Majid
and
M.
Suleiman
, “The four point-EDGMSOR iterative method for solution of 2D Helmholtz equations,”
A.
Abd Manaf
, et al
(Eds.):
ICIEIS 2011, Part III, CCIS 253
, (
Springer-Verlag Berlin Heidelberg
,
2011
) pp.
218
227
.
20.
J.
Sulaiman
,
M. K.
Hasan
,
M.
Othman
, and
S. A. A.
Karim
, “
MEGSOR iterative method for the triangle element solution of 2D Poisson equations
,”
International Conference on Computational Science, ICCS 2010, Published by Elsevier Ltd. 2012)
pp.
377
385
.
21.
A.
Saudi
and
J.
Sulaiman
,
Jurnal Teknologi (Sciences & Engineering)
78
,
12
24
(
2016
).
22.
E. J.
Hong
,
A.
Saudi
, and
J.
Sulaiman
,
ACM. HP3C
,
22
24
(
2017
).
23.
L. H.
Ali
,
J.
Sulaiman
,
A.
Saudi
,
M. M.
Xu
,
Lecture Notes in Electrical Engineering
,
724
,
325
337
(
2021
).
24.
P.
Darania
and
A.
Ebadian
,
Applied Mathematics and Computation
188
,
657
668
(
2007
).
25.
A. M.
Wazwaz
,
A first course in integral equations
. (
World Scientifi
,
USA
,
2015
).
This content is only available via PDF.
You do not currently have access to this content.