In the past few years, several techniques and approaches have been developed by researchers for the ocean survey. An autonomous underwater vehicle primarily known as the glider is vastly used for oceanographic study and survey. With the help of these vehicles now it possible to have a study on the effects of pesticides, metal, biological toxins, or chemicals on the living organisms of the sea. Additionally, monitoring of threats such as biological weapons, radioactive leakage, and detection of mines is a very important parameter for keeping safety in check. Considering these parameters autonomous vehicles primarily known as glider are vastly used by oceanographers as they are relatively inexpensive, reusable, and have long mission durations. Such vehicle uses advanced sensors to perform automated monitoring and fast data acquisition. Since their inception in the 1980s, there have been considerable developments that have led to the augmentation of scientifically and commercially focused products. A comprehensive analysis of various underwater gliders and their working principle has been done here, emphasizing their architecture and working capabilities.

1.
Davis,
Russ
E.
,
Charles C.
Eriksen
, and
Clayton P.
Jones
. “Autonomous buoyancy-driven underwater gliders.”
The technology and applications of autonomous underwater vehicles
,
CRC Press
, Chapter 3, pp.
37
58
. (
2002
)
2.
cH.
Stommel
, “
The Slocum Mission
”,
Oceanography
,
2
, pp.
22
25
, (
1989
)
3.
Davis
,
R. E.
, et al, “
The autonomous Lagrangian circulation explorer (ALACE
)”,
Journal of atmospheric and oceanic technology
,
9
, pp.
264
285
(
1992
)
4.
Roemmich
,
Dean
, et al, “
The Argo Program: Observing the global ocean with profiling floats
”,
Oceanography
,
22,
pp.
34
43
(
2009
)
5.
W. J.
Gould
, “
A Brief History of Float Development
,” (
2002
).
6.
Wood
,
Stephen
, and
A. V.
Inzartsev
. “
Autonomous underwater gliders
”, Published by
INTECH Open Access Publisher
, (
2009
).
7.
Rudnick,
Daniel
L.
, et al. “
Underwater gliders for ocean research
”,
Marine Technology Society Journal
,
38
(
2)
, pp.
73
84
. (
2004
).
8.
Bender
,
Asher
, et al. “
Analysis of an autonomous underwater glider
”,
Proceedings of the Australasian conference on robotics and automation.
(
2008
).
9.
Kawaguchi
,
Katsuyoshi
, et al. “
Development of shuttle type AUV ‘ALBAC. and sea trials for oceanographic measurement
”,
Journal of the Society of Naval Architects of Japan
,
178
, pp.
657
665
, (
1995
).
10.
Webb Research, “Slocum G3 Glider.” (
2002
).
11.
Webb,
Douglas
C.
,
Paul J.
Simonetti
, and
Clayton P.
Jones
. “
SLOCUM: An underwater glider propelled by environmental energy
”,
IEEE Journal of oceanic engineering
,
26
, pp.
447
452
(
2001
).
12.
https://spraydata.ucsd.edu/ “Spray Underwater Glider”, (
2019
).
13.
Sherman
,
Jeff
, et al. “
The autonomous underwater glider “Spray
”,
IEEE Journal of Oceanic Engineering
,
264
, pp.
437
446
(
2001
).
14.
Eriksen
,
Charles
C.
, et al. “
Seaglider: A long-range autonomous underwater vehicle for oceanographic research
”,
IEEE Journal of Oceanic Engineering
,
26
, pp.
424
436
, (
2001
).
15.
Osse,
T.
James
, and
Charles C.
Eriksen
. “
The Deepglider: A full ocean depth glider for oceanographic research
”,
OCEAN
, pp.
1
12
(
2007
).
16.
Craig
Lee
, “
Sea glider: Autonomous Underwater Vehicle
.” (
2009
).
17.
ONR
, “
Liberdade XRAY Advanced Underwater Glider
”,
ONR Press release
, (
2006
).
18.
Liquid Robotics, “
The Wave Glider: How It Works.”
(
2012
).
19.
Alvarez
,
Aa
, et al. “
Folaga: A low-cost autonomous underwater vehicle combining glider and AUV capabilities
,”
Ocean Engineering
,
36
, pp.
24
38
(
2009
)
20.
Jenkins
,
S. A
, et al. “
Underwater Glider System Study
”,
UC San Diego: Library – Scripps Digital Collection
, (
2003
).
21.
Griffiths
,
Gwynn
, et al. “
Undersea gliders
”,
Journal of Ocean Technology
,
2
, pp.
64
75
(
2007
).
22.
Rudnick,
Daniel
L.
Ocean research enabled by underwater gliders
”,
Annual review of marine science
,
8
, pp.
519
54
(
2008
).
23.
Javaid,
Muhammad
Yasar
, et al. “
Underwater gliders: a review
”,
MATEC Web of Conferences
,
13
, pp.
1
5
(
2014
). 10.
24.
Jangam
S.
,
Hema
Devi
A.,
Raja
S.
,
Hemachandra
Reddy
K.,
Vijay
Kumar
G. (
2018
)
The Tensile Fatigue Behaviour of Aligned MWNT/Epoxy Nanocomposites
. In:
Seetharamu
S.
,
Rao
K.
,
Khare
R.
(eds)
Proceedings of Fatigue, Durability and Fracture Mechanics. Lecture Notes in Mechanical Engineering
.
Springer
,
Singapore
. .
25.
S.
Jangam
,
K. H.
Reddy
, and
S.
Raja
,
Fabrication & Characterization of Hybrid fibers and Hybrid Fiber reinforced composites – A Novel Approach
,
Materials Today: Proceedings.
,
2018
,
5/1
) pp.
2795
2802
. .
26.
S.
Jangam
,
S.
Raja
, and
B. Maheswar
Gowd
,
Influence of multiwall carbon nanotube alignment on vibration damping of nanocomposites
,
Journal of Reinforced Plastics and Composites
,
2016
,
35/8
) pp.
617
627
. .
27.
S.
Jangam
,
S.
Raja
, and
K. H.
Reddy
,
Effect of multiwalled carbon nanotube alignment on the tensile fatigue behavior of nanocomposites
, (
Journal of Composite Materials.
2017
,
52/17
) pp.
2365
2374
. .
28.
K.
Ramesha
,
S.
Pd
,
N.
Santhosh
, and
S.
Jangam
,
Engineering and Applied Science Research Design and optimization of the process parameters for friction stir welding of dissimilar aluminium alloys
, (
Eng. Appl. Sci. Res.
,
2021
,
48/3
) pp.
257
267
. https://ph01.tci-thaijo.org/index.php/easr/article/view/241021.29.
29.
Santhosh
,
N.
;
Kempaiah
,
U.N.
;
Sunil
,
G.S.
;
Reddy
,
H.N.
Novel Aluminium–SiCp–Fly Ash Hybrid Metal Matrix Composites: Synthesis and Properties
.
J. Aerosp. Eng. Technol.
2017
,
7
,
26
33
.
30.
Santhosh
,
N.
;
Kempaiah
,
U.N.
;
Gowda
,
A.C.
Corrosion Characterization of Silicon Carbide and Fly Ash Particulates Dispersion Strengthened Aluminium 5083 Composites
.
J. Catal. Catal.
2017
,
4
,
9
21
.
31.
Nagaraja
,
S.
;
Nagegowda
,
K.U.
; Kumar
V
,
A.
;
Alamri
,
S.
;
Afzal
,
A.
;
Thakur
,
D.
;
Kaladgi
,
A.R.
;
Panchal
,
S.
;
Saleel
C
, A.
Influence of the Fly Ash Material Inoculants on the Tensile and Impact Characteristics of the Aluminum AA 5083/7.5SiC Composites
.
Materials
2021
,
14
,
2452
. .
This content is only available via PDF.
You do not currently have access to this content.