Depletion of groundwater resources poses a serious challenge to society around the globe and threatening water quality and quantity; which makes it essential to access groundwater for sustainable development & management. In this study; assessment of groundwater changes is done over the Krishna river basin using the water balance method (WBM) & water table fluctuation method (WTFM) using IMERG-GPM, GLDAS2.1, WRIS, & APSDMA data for the year 2018-2019. Rainfall data from IMERG-GPM & WRIS have a close relationship as indicated by R2 of 0.91. Evapotranspiration & runoff derived from GLDAS2.1 shows a close relationship with WRIS & APSDMA data with R2 as 0.9 and 0.56, respectively. This shows the good reliability of evapotranspiration & runoff data from GLDAS 2.1 datasets over an entire region. The estimated recharge using WTFM using WRIS data is compared with recharge estimated using IMERG-GPM & GLDAS2.1 data to check the reliability of WBM during monsoon months of 2018-2019, which shows a close relationship indicated by R2 as 0.52. The estimated average groundwater recharge over the monsoon months for WTFM and WBM was 127.1 mm, 40.41 mm respectively with an average rainfall of 138 mm. The percentage of rainwater recharge over the Krishna river basin is 32.8, 39.17, 30.25, and 6.9% for June, July, August, and September 2018 respectively. Results show that the basin having a positive water balance of 14692.3 MCM yr−1 during the year 2018-2019. Overall these types of studies will improve the accuracy of assessment of groundwater using different satellite data sources, for the sustainable development & management of groundwater in the future.

1.
A.
Montenegro
,
R.
Ragab
,
Hydrological response of a Brazilian semiarid catchment to different land use and climate change scenarios: a modeling study
(
Hydrological Processes
,
2010
), pp.
2705
2723
.
2.
G.B.
Allison
,
G.W.
Gee
,
S.W.
Tyler
,
Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions
(
Soil Science Society of America Journal
58
,
1994
), pp.
6
14
.
3.
P.
Brunner
,
H. J. Hendricks
Franssen
,
T.
Kgotlhang
,
P.
Bauer-Gottwein
,
W.
Kinzelbach
,
How can remote sensing contribute in groundwater modeling
(
Hydrogeolgy Journal
15
,
2007
), pp.
5
18
.
4.
Russell S.
Crosbie
,
Phil
Davies
,
Nikki
Harrington
,
Sebastien
Lamontagne
,
Ground truthing groundwater-recharge estimates derived from remotely sensed evapotranspiration: a case in South Australia
(
Hydrogeology Journal
,
2015
), pp.
335
350
.
5.
S. Krishna
Kumar
,
V.
Rammohan
,
J. Dajkumar
Sahayam
,
M.
Jeevanandam
, Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin (
Environmental Monitoring and Assessment
,
Tamil Nadu, India
,
2009
), pp.
341
351
.
6.
M.C.
Lucas
,
P.T.S.
Oliveira
,
D.C.D.
Melo
,
E.
Wendland
,
Evaluation of remotely sensed data for estimating recharge over the Guarani Aquifer System outcrop zones
(
Hydrogeology journal
23
,
2015
), pp.
961
969
.
7.
Hsin-Fu
Yeh
,
Cheng-Haw
Lee
,
Jin-Fa
Chen
,
Wei-Ping
Chen
,
estimation of groundwater recharge using water balance model
(
Water resources
,
2007
), pp.
153
162
.
8.
A.
Asoka
.,
Y.
Wada
,
R.
Fishman
,
V.
Mishra
,
Strong Linkage Between Precipitation Intensity and Monsoon Season Groundwater Recharge in India
(
Geophysical Research Letters
,
2018
), pp.
5536
5544
.
9.
Dattatraya R.
Mahajan
,
Basavanand M.
Dodamani
,
Spatial and temporal drought analysis in the Krishna river basin of Maharashtra, India
(
Cogent Engineering
3
.
1
,
2016
), pp.
1185926
.
10.
Yongjiu
Dai
,
Xubin
Zeng
,
Robert E.
Dickinson
,
Ian
Baker
,
Gordon B.
Bonan
,
Michael G.
Bosilovich
,
A. Scott
Denning
,
Paul A.
Dirmeyer
,
Paul R.
Houser
,
Guoyue
Niu
,
Keith W.
Oleson
,
C. Adam
Schlosser
, and
Zong-Liang
Yang
,
The common land model
(
American Meteorological Society
84
,
2003
), pp.
1013
1023
.
11.
P.
Bai
,
X.
Liu
,
T.
Yang
,
K.
Liang
,
C.
Liu
,
Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan Plateau
(
Journal of Geophysical Research: Atmospheres
,
2016
), pp.
12
180
.
12.
Khan
,
Muhammad Sarfraz
,
Jongjin
Baik
, and
Minha
Choi
,
Inter-comparison of evapotranspiration datasets over heterogeneous landscapes across Australia
(
Advances in Space Research
,
2020
), pp.
533
545
.
13.
A.
Khalaf
, “
Spatial and temporal distribution of groundwater recharge in the West Bank using remote sensing and GIS techniques
,” Ph.D. thesis,
Durham University
,
2010
.
14.
M.C.
Lucas
,
P.T.S.
Oliveira
,
D.C.D.
Melo
,
E.
Wendland
,
Evaluation of remotely sensed data for estimating recharge over the Guarani Aquifer System outcrop zones
(
Hydrogeology Journal
,
2015
), pp.
961
969
.
15.
Pedro Henrique Jandreice
Magnoni
,
Cesar de Oliveira
Ferreira Silva
1,
Rodrigo Lilla
Manzione
,
Groundwater recharge and water table levels modelling using remotely sensed data and cloud-computing
(
Sustainable Water Resources Management
,
2020
), pp.
1
16
.
16.
Victor Hugo R.
Coelho
,
Suzana
Montenegro
,
Cristiano N.
Almeida
,
Bernardo B.
Silva
,
Leidjane M.
Oliveira
,
Ana Claudia V.
Gusmao
,
Emerson S.
Freitas
,
Abelardo A.A.
Montenegro
,
Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data
(
Journal of Hydrology
,
2017
), pp.
1
15
.
17.
Russell S.
Crosbie
,
Philip
Binning
,
Jetse D.
Kalma
,
A time series approach to inferring groundwater recharge using the water table fuctuation method
(
Water Resources Research
,
2005
), pp.
1
.
18.
P.L.
Harshavardhan
,
P.C.
Nayak
,
S.
Kumar
,
Spatio-temporal Rainfall Variability and Trend Analysis for Krishna River Basin in India
, (
Indian Journal ecology
,
2020
), pp.
54
59
.
19.
A.Y.
Hou
,
R.K.
Kakar
,
S.
Neeck
,
A.A.
Azarbarzin
,
C.D.
Kummerow
,
M.
Kojima
,
R.
Oki
,
K.
Nakamura
,
T.
Iguchi
,
The global precipitation measurement mission
(
Bulletin of the American Meterological Society
95
,
2014
), pp.
701
722
.
20.
M.
Rodell
,
P.R.
Houser
,
U.
Jambor
,
J.
Gottschalck
,
K.
Mitchell
,
C.J.
Meng
,
K.
Arsenault
,
B.
Cosgrove
,
J.
Radakovich
,
M.
Bosilovich
,
J.K.
Entin
,
J.P.
Walker
,
D.
Lohmann
,
D.
Toll
,
The global land data assimilation system
(
Bulletin of the American Meterological Society
,
2004
), pp.
381
394
.
21.
P. T. S.
Oliveira
,
E.
Wendland
,
M. A.
Nearing
,
R. L.
Scott
,
R.
Rosolem
, and
H. R.
da Rocha
,
The water balance components of undisturbed tropical woodlands in the Brazilian cerrado
(
hydrology and earth system sciences
,
2015
), pp.
2899
2910
.
22.
Akarsh
Asoka
,
Yoshihide
Wada
,
Ram
Fishman
, and
Vimal
Mishra
,
Strong Linkage Between Precipitation Intensity and Monsoon Season Groundwater Recharge in India
(
Geophysical Research Letters
,
2018
), pp.
5536
5544
.
23.
E.
Wendland
,
C.
Barreto
,
L.H.
Gomes
,
Water balance in the Guarani Aquifer outcrop zonebased on hydrogeologic monitoring
(
Journal of hydrology
,
2007
), pp.
261
269
.
24.
K.
Tong
,
F.
Su
,
D.
Yang
,
L.
Zhang
, and
Z.
Hao
,
Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau
(
Journal of Hydrology
,
2014
), pp.
423
437
.
This content is only available via PDF.
You do not currently have access to this content.