Jordan Γ-(σ, 𝒯) - derivation and Γ-(σ, 𝒯)- derivation are presented and study on prime Γ-near ring when ℕ is 2-torsion free. Herein we introduce some important results that related to the notion of Γ-(σ,τ)-derivation and Jordan Γ- (σ,τ)-derivation.

1.
A.
Ben Abdeljelil
,
M.
Elhamdadi
,
I.
Kaygorodov
and
A.
Makhlouf
,
Generalized Derivations of n-BiHom- Lie algebras
, July
2020
.
2.
M.
Ashraf
and
A.
Shakir
(σ,τ)-derivationon prime near ring
.
Arch Math. (Brno)
,
40
,
281
286
, (
2004
).
3.
H. E.
Bell
and
G.
Mason
, On derivations in near rings, Near-Rings and Near-Fields (
G.
Betsch
, ed.)
North- Holland
,
Amsterdam
,
31
35
, (
1987
).
4.
W.E.
Barnes
,
On the Gamma-rings of Nobusawa
,
Pacific J. Math.
,
18
,
411
422
, (
1966
).
5.
S.
Chakraborty
and
A. C.
Paul
,
On Jordan k-derivation of 2- torsion free prime ΓN-rings
,
International Mathematical Forum
,
2
, no.
57
,
2823
2829
, (
2007
).
6.
Y.
Ceven
and M.,
Ali
Ozturk
,
On Jordan generalized derivations Gamma-rings
,
Hacettepe Journal of Mathematics and statistics
,
33
,
11
14
, (
2004
).
7.
B.
Hvala
,
Generalized derivations in rings
,
Communications in algebra
, vol.
26
, no.
4
, pp.
1147
1166
, (
1998
).
8.
Y.
Jun
,
H.
Kim
and
Y.
Cho
,
On Γ- derivations in Γ-near rings
,
Soochow J. Math.
29
,
275
282
, (
2003
).
9.
M. R.
Khan
and
M. M.
Hasnain
,
Γ-near rings with generalized Γ-derivation
,
Novisad J. Math.
44
(
2
),
19
28
, (
2014
).
10.
S.
Kyuno
,
On prime Gamma-ring, pacific
J. Math.
, vol.
75
,
185
190
, (
1975
).
11.
L.
Luh
,
On the theory of simple Gamma-rings
,
Michigan Math. J.
vol.
16
,
65
75
(
1969
).
12.
L.
Kong
and
J.
Zhang
,
Jordan {g,h}-derivations on triangular algebras
,
De Gruyter
,
18
,
849
901
, (
2020
).
13.
N.
Nobusawa
,
On a generalization of the ring theory
.
Osaka J. Math.
1
,
81
89
(
1964
).
14.
X. K.
Wang
,
Derivations in prime near- ring
,
Proc. Amer. Math. Soc.
121
,
361
366
, (
1994
).
This content is only available via PDF.
You do not currently have access to this content.