The relatively simple and reliable design, the high degree of automation, and the use of cost-effective performance control methods minimize the specific energy consumption and make the operation of screw compressors commercially attractive. The goal of all screw compressor performance control systems is to ensure optimal, in terms of minimum energy consumption, compressor operation while maintaining a relatively constant final compression pressure, regardless of the required flow rate of the working medium in the network. The paper considers a complete classification of methods for regulating the performance of screw compressors and gives a comparative assessment of the possibility of their application for a screw single-rotor compressor.

1.
A.
Kovacevic
,
N.
Stosic
,
I.
Smith
,
Screw compressors: three dimensional computational fluid dynamics and solid fluid interaction
(
Springer-Verlag Berlin Heidelberg
,
New York
,
2007
),
158
p.
2.
A.
Giampaolo
,
Compressor handbook: principles and practice
(
CRC Press
,
Boca Raton
,
2020
),
376
p.
3.
N.
Stosic
,
I.
Smith
,
A.
Kovacevic
,
Screw compressors: mathematical modelling and performance calculation
(
Springer-Verlag Berlin Heidelberg
,
New York
,
2005
),
138
p.
4.
H. H.
Patel
,
V. J.
Lakhera
,
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
234
(
1
),
157
170
(
2020
).
5.
B.
Zimmern
,
G. C.
Patel
,
Design and operating characteristics of the Zimmern single screw compressor
.
International Compressor Engineering Conference paper
16
(
1972
).
6.
B.
Zimmern
,
From water to refrigerant: twenty years to develop the oil injection-free single screw compressor
.
Proc. Int. Compressor Conf. at Purdue paper
500
(
1984
).
7.
D.
Ziviani
,
E. A.
Groll
,
Braun
J. E.
,
W. T.
Horton
,
M.
De Paepe
, and
M.
van den Broek
,
IOP Conference Series: Materials Science and Engineering
232
(
1
),
012076
(
2017
).
8.
J.
Liu
,
Q.
Li
,
F.
Wang
and
L.
Zhou
,
International journal of refrigeration
35
(
4
),
861
870
(
2012
).
9.
R.
Huang
,
F.
Liu
,
T.
Li
and
Q.
Feng
,
IOP Conference Series: Materials Science and Engineering
232
(
1
),
012071
(
2017
).
10.
D.
Ziviani
,
P. J.
Goeghegan
,
E. A.
Groll
,
IOP Conference Series: Materials Science and Engineering
604
(
1
),
012074
(
2019
).
11.
N.
Casari
,
E.
Fadiga
,
M.
Pinelli
,
A.
Suman
and
D.
Ziviani
,
Designs
4
(
1
),
2
(
2020
).
12.
F.
Liu
,
X.
Liao
,
Q.
Feng
,
M.
Van Den Broek
and
M.
De Paepe
,
IOP Conference Series: Materials Science and Engineering
90
(
1
),
012011
(
2015
).
13.
Z.
Wang
,
J.
Wang
,
W.
Jiang
, and
Q.
Feng
,
Applied Thermal Engineering
110
,
1172
1182
(
2017
).
14.
Z.
Wang
,
J.
Wang
,
W.
Jiang
, and
Q.
Feng
,
Applied Thermal Engineering
103
,
139
149
(
2016
).
15.
Z.
Wang
,
Z.
Liu
,
F.
Liu
,
X.
Yu
and
Q.
Feng
,
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
228
(
8
),
965
977
(
2014
).
16.
T.
Li
,
Y.
Wang
,
X.
Mao
,
D.
Chen
,
R.
Huang
and
Q.
Feng
,
Energies
13
(
16
),
4232
(
2020
).
17.
Z.
Zhang
,
W.
Wu
,
Applied Thermal Engineering
188
,
116614
(
2021
).
18.
B.
Zhao
,
H.
Song
,
Engineering with Computers
,
1
11
(
2021
).
19.
R.
Huang
,
T.
Li
,
X. L.
Yu
,
F. L.
Liu
and
Q. K.
Feng
,
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
229
(
2
),
139
150
(
2015
).
20.
Z.
Wang
,
H.
Wang
,
Y.
Qu
,
W.
Jiang
and
Q.
Feng
,
International Journal of Refrigeration
92
,
113
124
(
2018
).
21.
J.
Yang
,
C.
Zhang
,
Z.
Zhang
,
L.
Yang
and
W.
Lin
,
Applied Thermal Engineering
103
,
205
211
(
2016
).
22.
Z.
Wang
,
Y.
Shen
,
Z.
Wang
,
J.
Wang
,
W.
Jiang
and
Q.
Li
,
International Journal of Refrigeration
88
,
91
101
(
2018
).
23.
W. F.
Wu
,
Q. K.
Feng
,
Journal of Zhejiang University-SCIENCE A
10
(
1
),
31
36
(
2009
).
24.
Y.
Lu
 et al,
Journal of Thermal Science
,
1
-
16
– 2020.
25.
Z.
Wang
,
Z.
Liu
,
H.
Wang
,
J.
Wang
,
Q.
Feng
and
Q.
Li
,
International Journal of Refrigeration
108
,
347
357
(
2019
).
26.
W.
Wu
,
J.
Li
and
Q.
Feng
,
Computer-Aided Design
43
(
1
),
67
71
(
2011
).
27.
B.
Zhao
,
M.
Yang
,
X.
Yang
,
L.
Xu
, and
D.
Gao
,
International Communications in Heat and Mass Transfer
77
,
43
48
(
2016
).
28.
L.
Shen
,
W.
Wang
,
Y.
Wu
,
L.
Cheng
,
B.
Lei
,
R.
Zhi
, and
C.
Ma
,
International Journal of Refrigeration
86
,
273
281
(
2018
).
29.
W.
He
,
Y.
Wu
,
Y.
Peng
,
Y.
Zhang
,
C.
Ma
and
G.
Ma
,
Applied thermal engineering
51
(
1-2
),
662
669
(
2013
).
30.
W.
Wang
,
Y. T.
Wu
,
C. F.
Ma
,
G. D.
Xia
and
J. F.
Wang
,
Energy
62
,
379
384
(
2013
).
31.
Z.
Wang
,
Z.
Wang
,
J.
Wang
,
W.
Jiang
and
Q.
Feng
,
pplied Thermal Engineering
110
,
1172
1182
(
2017
).
32.
Y.
Li
,
Y.
Wu
,
B.
Sunden
and
G.
Xie
,
International Journal of Energy Research
43
(
4
),
1494
1504
(
2019
).
33.
L. G.
Kuznetsov
,
Y. L.
Kuznetsov
,
V. A.
Pronin
,
A. V.
Burakov
,
A. V.
Bozhedomov
and
N. A.
Kotlov
, Russian Federation Patent No. 2,020,114,579 (7 August
2020
).
34.
V. A.
Pronin
,
D. V.
Zhignovskaia
,
A. F.
Minikaev
and
D.
Yerezhep
,
IOP Conference Series: Materials Science and Engineering
826
(
1
),
012001
(
2020
).
35.
V. A.
Pronin
,
Y. L.
Kuznetsov
,
D. V.
Zhignovskaia
and
A. V.
Kovanov
,
AIP Conference Proceedings
2285
,
030010
(
2020
).
36.
A. F.
Minikayev
,
V. A.
Pronin
and
D. V.
Zhignovskaia
,
Lecture Notes in Mechanical Engineering
,
191
196
(
2020
).
37.
V. A.
Pronin
,
Y. L
Kuznetsov
,
D. V.
Zhignovskaia
,
A. F.
Minikaev
and
D.
Yerezhep
,
AIP Conference Proceedings
2141
,
030010
(
2019
).
38.
V. A.
Pronin
,
A. A.
Malyshev
and
O. V.
Dolgovskaia
,
Chemical and Petroleum Engineering
54
(
3-4
),
183
187
(
2018
).
39.
A.
Minikaev
,
D.
Yerezhep
and
V. A.
Pronin
,
International Russian Automation Conference (RusAutoCon) IEEE
, pp.
8501830
(
2018
).
40.
F.
Soderlund
and
K.
Karlsson
, U.S. Patent No. 4,597,726 (
1986
).
41.
B. M.
Dikovsky
,
E. A.
Nihamkin
,
Y. S.
Portyansky
and
V. B.
Yadlin
,
U.S.S.R. Patent No. 564
,
442
(
1977
).
42.
Y. D.
Lomakin
,
K. K.
Mazitov
and
A. I.
Shvarts
, U.S.S.R. Patent No. 332,
249
(
1972
).
43.
Y. I.
Dimentov
,
M. Y.
Podoksik
,
E. G.
Kharazov
,
V. V.
Ezhova
and
V. B.
Yadlin
, U.S.S.R. Patent No. 792,
000
(
1980
).
44.
V. A.
Kalupin
,
Y. M.
Vorobyov
,
G. A.
Kanyshev
and
R. V.
Pryakhin
, U.S.S.R. Patent No. 1,262, 114 (
1986
).
45.
V. B.
Yadlin
,
Y. S.
Portyansky
,
E. A.
Nihamkin
,
M. Y.
Podoksik
and
B. M.
Dikovsky
, U.S.S.R. Patent No. 661,
121
(
1979
).
46.
H.
Shibbay
and
A.
Englund
, U.S.S.R. Patent No. 910,
133
(
1982
).
47.
P. A.
Andreev
,
V. V.
Afonin
,
N. I.
Bobrikov
,
L. F.
Zakharova
,
N. N.
Sidora
and
A. M.
Tarasov
, U.S.S.R. Patent No. 498,
413
(
1976
).
48.
E. V.
Shakhmatov
,
A. N.
Kryuchkov
and
G. O.
Belov
, Russian Federation Patent No. 2,009,116,680 (12 December
2009
).
49.
V. L.
Yusha
,
A. N.
Kabakov
and
A. P.
Bolshtyansky
, U.S.S.R. Patent No. 994,
801
(
1983
).
50.
M. G.
Field
and
D. N.
Shaw
, U.S. Patent No. 5,044,894 (
1991
).
This content is only available via PDF.
You do not currently have access to this content.