Passive radiative cooling is a promising field in energy conservation and environmental protection. Radiative cooling includes technologies and design features developed for cooling buildings with minimal energy consumption and can significantly contribute to the limit of global warming when implemented on a large scale. In recent years, several new high-emission materials have been proposed that enabled the radiative coolers to provide an average daily cooling power of around 100 W/m2 during the daytime. Based on the developed mathematical model, the multi-layer coating optical properties for the radiative cooling system evaluated by the Transfer Matrix Method, and the effectiveness of radiative cooling due to using a multi-layer coating determined in the climatic conditions of Syria (Latakia). The results of modeling the atmospheric transmittance and solar radiation in the summer in Syria (Latakia) are presented. The maximum cooling power of the multi-layer coating was 37 W/m2 at night during the summer. The multi-layer coating surface temperature at night is about 3 degrees below the average ambient temperature. The methods presented in this study for modeling atmospheric transmittance, calculating solar irradiation, evaluating the multi-layer coating optical properties allow determining the effective multi-layer coating for daytime radiative cooling systems in any climatic conditions. The methods presented in this study for modeling atmospheric transmittance, calculating solar irradiation, evaluating the multi-layer coating optical properties allow determining the effective multi-layer coating for daytime radiative cooling systems in any climatic conditions.

1.
M.
Zeyghami
,
D. Y.
Goswami
, and
E.
Stefanakos
,
Energy Mater. Sol. Cells
178
,
115
128
(
2018
).
2.
J. R.
Howell
,
R.
Siegel
, and
M. P.
Mengüç
,
Thermal Radiation Heat Transfer
(
CRC Press
,
INC
,
2015
).
3.
S. S.
Jenblat
and
O. V.
Volkova
,
Kholodilnaia Tekhnika
9
,
36
44
(
2019
) (in Russian).
4.
A. P.
Raman
,
M. A.
Anoma
,
L.
Zhu
 et al.,
Nature
515
(
7528
),
540
544
(
2014
).
5.
E. A.
Goldstein
,
A. P.
Raman
, and
S.
Fan
,
Nat. Energy
2
(
9
),
17143 (1
7
) (
2017
).
6.
J.
Kou
,
Z.
Jurado
,
Z.
Chen
,
S.
Fan
 et al.,
ACS Photonics
4
(
3
),
626
630
(
2017
).
7.
D.
Zhao
,
A.
Aili
,
X.
Yin
 et al.,
Energy & Buildings
203
,
109453 (1
9
) (
2019
).
8.
Y.
Zhai
,
Y.
Ma
,
S. N.
David
 et al.,
Science
355
(
6329
),
1062
1066
(
2017
).
9.
J.
Mandal
,
Y.
Fu
,
A. C.
Overvig
 et al.,
Science 362
(
6412
),
315
319
(
2018
).
10.
A. R.
Gentle
and
G. B.
Smith
,
Adv. Sci
2
(
9
), p.
1500119 (1
4
) (
2015
).
11.
R. Y. M.
Wong
,
C. Y.
Tso
,
C. Y. H.
Chao
 et al.,
Solar Energy Materials and Solar Cells
186
,
330
339
(
2018
).
12.
H.
Bao
,
C.
Yan
,
B.
Wang
 et al.,
Solar Energy Materials and Solar Cells
168
,
78
84
(
2017
).
13.
C. Y.
Tso
,
K. C.
Chan
, and
C. Y. H.
Cha
,
Renewable Energy
106
,
52
61
(
2017
).
14.
J.
Liu
,
D.
Zhang
,
S.
Jiao
 et al.,
Solar Energy Materials & Solar Cells
207
,
110368 (1
10
) (
2020
).
15.
Z.
Yi
,
Y.
lv
,
D.
Xu
 et al.,
Energy and Built Environment
2
(
2
),
214
222
(
2021
).
16.
A.
Kumar
, and
A.
Chowdhury
,
Solar Energy
183
,
410
418
(
2019
).
17.
S.
Laatioui
,
M.
Benlattar
, and
M.
Saadouni
,
Optik.
166
,
24
30
(
2018
).
18.
T.
Karlessi
,
M.
Santamouris
,
K.
Apostolakis
 et al.,
Solar Energy
83
(
4
),
538
551
(
2009
).
19.
A. V.
Baranenko
,
A. S.
Granovskij
,
A. P.
Tsoy
, and
D. P.
Tsoy
,
Kholodilnaia Tekhnika
12
,
36
41
(
2014
) (in Russian).
20.
P. A.
Tsoy
,
A. S.
Granovsky
,
Yu. I.
Machuev
,
A. S
Filatov
,
Journal international academy of refrigeration
3
,
28
33
(
2015
) (in Russian).
21.
A. P.
Tsoy
,
A. V.
Baranenko
,
A. S.
Granovskij
, and
A. Ya.
Eglit
,
Journal international academy of refrigeration
3
,
35
40
(
2014
) (in Russian).
22.
A. P.
Tsoy
,
A. V.
Baranenko
, and
A. Ya.
Eglit
,
Journal international academy of refrigeration
4
,
8
11
(
2012
) (in Russian).
23.
A. P.
Tsoy
,
A. S.
Granovskij
, and
A. V.
Baranenko
,
Journal international academy of refrigeration
1
,
7
10
(
2014
) (in Russian).
24.
J. T.
Oliveira
,
A.
Hagishima
, and
J.
Tanimoto
,
Energy and Buildings
41
(
8
),
809
813
(
2009
).
25.
B.
Orel
,
M. K.
Gunde
, and
A.
Krainer
,
Sol. Energ
50
(
6
),
477
482
(
1993
).
26.
J.
Mandal
,
M.
Jia
,
A.
Overvig
 et al.,
Joule
3
(
12
),
3088
3099
(
2019
).
27.
D.
Zhao
,
A.
Aili
,
Y.
Zhai
 et al.,
Appl. Phys
6
(
2
),
021306 (1
41
) (
2019
).
28.
Z.
Li
,
Q.
Chen
,
Y.
Song
 et al.,
Adv. Mater. Technol
5
(
5
),
1901007(1
19
) (
2020
).
29.
X.
Yin
,
R.
Yang
,
G.
Tan
, and
S.
Fan
,
Science
370
(
6518
),
786
791
(
2020
).
30.
C. G.
Granqvist
, and
A.
Hjortsberg
,
J. Appl. Phys
52
(
6
),
4205
4220
(
1981
).
31.
The MODTRAN Web App software, Online Atmospheric Transmittance Mode.
http://modtran.spectral.com/modtran_home (accessed
December 01 2020
).
32.
C.
Liu
,
Y.
Wu
,
B.
Wang
,
C. Y.
Zhao
, and
H.
Bao
,
Sol. Energy
183
,
218
225
(
2019
).
33.
S.
Kumar
, and
S. C.
Mullick
,
Sol. Energy
84
(
6
),
956
963
(
2010
).
34.
D.
Zhao
,
A.
Aili
,
Y.
Zhai
 et al.,
Joule
3
(
1
),
111
23
(
2019
).
35.
Pvlighthouse, Online Solar Spectrum Calculator. https://www.pvlighthouse.com.au/ (accessed December 15 2020).
36.
P.
Yeh
,
Optical waves in layered media
, (
Wiley
,
Hoboken (USA
),
2005
).
37.
T.
Mackay
and
A.
Lakhtakia
,
The Transfer-Matrix Method in electromagnetics and optics
, (
Morgan & Claypool Publishers
,
California (USA
),
2020
).
38.
M.
Born
and
E.
Wolf
,
Principles of optics: electromagnetic theory of propagation, interference and diffraction of light
,
Elsevier
(
1980
).
39.
J.
Kischkat
,
S.
Peters
,
B.
Gruska
 et al.,
Applied Optics
51
(
28
),
6789
6798
(
2012
).
40.
L.
Gao
,
F.
Lemarchand
, and
M.
Lequime
,
Opt. Express
20
(
14
),
15734
15751
(
2012
).
41.
L. V.
Rodríguez-de Marcos
,
J. I.
Larruquert
,
J. A.
Méndez
 et al.,
Opt. Mater, Express
6
(
11
),
3622
3637
(
2016
).
42.
T. J.
Bright
,
J. I.
Watjen
,
Z. M.
Zhang
 et al,
Thin Solid Films
520
(
22
),
6793
6802
(
2012
).
43.
H. U.
Yang
,
J.
D’Archangel
,
M. L.
Sundheime
 et al.,
Physical Review B
91
(
23
),
1
11
(
2015
).
44.
W. S. M.
Werner
,
K.
Glantschnig
, and
C.
Ambrosch-Draxl
,
J. Phys Chem Ref. Data
38
(
4
),
1013
1092
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.