In India the age group of 20+population, it is estimated that 65 million people are diagnosed with DR and retinitis pigmentosa in 2016. On assumption that around a quarter of these people have any related diseases like Diabetic Retinopathy or the retinitis pigmentosa, in these people a very minor proportion are subjected to the factor of eyesight loss or are already suffering from it. Diabetic Retinopathy is generally the sub disease of diabetes which leads to problems in the eyes. This is mainly because of the harm caused to the light absorbing part called the retina behind the eye, the blood vessels present there get damaged due to DR which further leads to these problems. In the initial stages, diabetic retinopathy has zero symptoms or the affect individuals may experience very minor vision problems. As it develops in the retina, it gradually causes entire vision loss as worsens; the development of this problem is usually noticed in people who are affected with either type one of diabetes of even noted in the later stages of diabetes. The development and impact of this disease is directly proportional to the longer the you have diabetes and the reduced control you have over your sugar levels. Retinitis pigmentosa is an inherited degenerative disease. It gradually affects the retinal part of the eye and causes night blindness and loss of side vision. In this project, we will be effectively classifying the retinal vessel in an eye based on the scanned images of the eye using deep learning algorithms to effectively identify the occurrence of diabetic retinopathy in a patient. A dataset consisting of the scanned images of the eye is trained using the resnet deep learning algorithm. Thus, this project gives an innovative solution to effectively identify the occurrence of diabetic retinopathy & retinitis pigmentosa in a patient based on the classification of the retinal vessels.

1.
C.
Aravindan
, V
Sharma
,
A
Thaarik
Ahamed
,
Mudit
Yadav
,
Sharat
Chandran
, Springer, Singapore, Vol
708
, (
2021
).
2.
A.
Mirbeik-Sabzevari
and
N.
Tavassolian
,
IEEE Transactions on Biomedical Engineering
, vol.
66
, no.
1
, pp.
176
-
186
, Jan. (
2019
).
3.
McWilliams
A
,
Beigi
P
,
Srinidhi
A
,
Lam
S
,
MacAulay
CE
,
IEEE Trans Biomed Eng.
(
2015
).
4.
A. A. A.
Setio
 et al.,
IEEE Transactions on Medical Imaging
, vol.
35
, no.
5
, pp.
1160
1169
, May (
2016
).
5.
Zhong
H
,
Song
M
,
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, Feb (
2019
).
6.
J. M.
Anton-Rodriguez
 et al.,
IEEE transactions on radiation and plasma medical sciences
, vol.
3
, no.
4
, July (
2019
).
7.
Jun
Xu
,
Lei
Xiang
,
Qingshan
Liu
,
Hannah
Gilmore
,
Jianzhong
Wu
,
Jinghai
Tang
, and
Anant
Madabhushi
,
IEEE Transactions on Medical Imaging
, vol no.
35
, (
2015
).
8.
J.
Jiang
 et al.,
IEEE Transactions on Medical Imaging
, vol.
38
, no.
1
, pp.
134
-
144
, Jan.
2019
9.
K.
Mandal
,
R.
Sarmah
and
D. K.
Bhattacharyya
,
IEEE/ACM Trans. on Computational Biology and Bioinformatics
, vol.
16
, no.
2
, (
2019
).
10.
S.
Rahmatinia
and
B.
Fahimi
,
IEEE Transactions on Magnetics
, vol.
53
, no.
6
, pp.
1
4
(
2017
).
11.
S.
Azizi
 et al.,
IEEE Transactions on Medical Imaging
, vol.
37
, no.
12
, pp.
2695
2703
, (
2018
).
12.
P.
Zang
 et al.,
IEEE Transactions on Biomedical Engineering
, vol.
68
, no.
6
, pp.
1859
1870
(
2021
).
13.
Yanbo
Wang
,
Weikang
Qian
,
Bo
Yuan
,
IEEE/ACM Trans. on Computational Biology and Bioinformatics
, (
2016
).
14.
Y.
Wang
 et al.,
IEEE Transactions on Medical Imaging
, vol.
39
, no.
4
, pp.
866
876
(
2020
).
15.
Ye
Tian
,
Sean S.
Wang
,
Zhen
Zhang
,
Olga C.
Rodriguez
,
Emanuel
Petricoin
 III
,
Ie-Ming
Shih
,
Daniel
Chan
,
Maria
Avantaggiati
,
Guoqiang
Yu
,
Shaozhen
Ye
,
Robert
Clarke
,
Chao
Wang
,
Bai
Zhang
,
Yue
Wang
, and
Chris
Albanese
,
IEEE/ACM transactions on computational biology and bioinformatics
, vol.
11
, no.
6
, (
2014
).
16.
H.
Yan
,
M.
Romero-López
,
H.B.
Frieboes
,
C.C.W.
Hughes
,
J.S.
Lowengrub
,
IEEE Transactions on Biomedical Engineering
, (
2016
).
17.
A.F.
Khalaf
,
I.A.
Yassine
,
A.S.
Fahmy
,
2016 IEEE International Conference on Image Processing
(
ICIP
, pp.
385
388
), (
2016
).
18.
H.
Fu
,
Y.
Xu
,
D.W.K.
Wong
,
J.
Liu
,
IEEE 13ᵗʰ International symposium on biomedical imaging ISBI
, pp.
698
701
(
2016
).
19.
S.
Xie
,
Z.
Tu
,
Proceedings of the IEEE International conference on computer vision
, pp.
1395
1403
, (
2015
).
20.
J.
Mo
,
L.
Zhang
,
Int. J. Comput. Assist. Radiol. Surg.
12
(
12
)
2181
2193
, (
2017
)
21.
K.
Hu
,
Z.
Zhang
,
X.
Niu
,
Y.
Zhang
,
C.
Cao
,
F.
Xiao
,
X.
Gao
,
Neurocomputing
309
,
179
191
, (
2018
).
22.
A.
Krizhevsky
,
I.
Sutskever
,
G.E.
Hinton
,
Adv. Neural Inf. Process. Syst.
1097
1105
, (
2012
)
23.
Y.
Guo
,
Ü.
Budak
,
A.
Sßengür
,
Comput. Methods Programs Biomed.
167
,
43
48
, (
2018
)
24.
P.
Liskowski
,
K.
Krawiec
,
IEEE Trans. Med. Imag.
35
(
11
)
2369
2380
, (
2016
)
25.
Ibrahim
Atli
,
Osman Serdar
Gedik
, Elsevier, Volume
24
, Issue
2
, April
2021
, pp no.
271
283
.
26.
Kishore
Balasubramanian
and
N. P.
Ananthamoorthy
,
J Ambient Intell Human Comput
12
,
3559
3569
(
2021
)
27.
J.
Long
,
E.
Shelhamer
,
T.
Darrell
,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
3431
3440
, (
2015
)
28.
G.
Huang
,
Z.
Liu
,
L.
Van Der Maaten
,
K.Q.
Weinberger
,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
4700
4708
, (
2017
).
29.
O.
Ronneberger
,
P.
Fischer
,
T.
Brox
, U-net,
Int. Conf. on Medical image computing and computer-assisted intervention
, pp.
234
241
, (
2015
)
30.
Y.
Zhang
,
A.C.
Chung
,
Int. conf. on medical image computing and computer-assisted intervention
, pp.
83
91
, (
2018
)
31.
J.
Staal
,
M.D.
Abràmoff
,
M.
Niemeijer
,
M.A.
Viergever
,
B.
Van Ginneken
,
IEEE Trans. Med. Imaging
23
(
4
)
501
509
, (
2004
).
32.
C.
Aravindan
,
R.
Vasuki
,
Materials Today: Proceedings
, (In press) ISSN 2214-7853, (
2021
)
This content is only available via PDF.
You do not currently have access to this content.