A nanoparticles composite with phase change material (paraffin wax) was prepared using alumina (Al2O3) as a surfactant to improve the dispersion of the Al2O3 nanoparticles with (0.5, 1, 3, 5) wt. % in paraffin wax with an Al2O3. To evaluate the efficiency of the prepared Phase Change Material (PCMs), the effective thermal conductivity values in the liquid state at a temperature of 60 °C. The heat storage behavior of the samples was investigated and their melting temperature, latent heat, and thermal reliability were determined. The results showed that the effective thermal conductivity enhancement ratios were 1.5 %, 3 %, 9 % and 15 % for the samples of 0.5 wt. %, 1 wt. %, 3 wt. % and 5 wt. %, respectively. In addition, the dynamic viscosity of the paraffin wax increases excessively with increasing the concentration nanoparticles with paraffin wax. Thus, the results indicate that there is an acceptable dispersion for Al2O3 nanoparticles in paraffin wax in concentration by 1 wt. %.

1.
Y.
Lin
,
Y.
Jia
,
G.
Alva
, and
G.
Fang
, “
Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage
,”
Renew. Sustain. Energy Rev.
, vol.
82
,no. Oct.
2017
, pp.
2730
2742
,
2018
.
2.
Y.
Deng
,
J.
Li
, and
H.
Nian
, “
Solar Energy Materials and Solar Cells Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials : Form-stabilization, thermal energy storage behavior and thermal conductivity enhancement
,”
Sol. Energy Mater. Sol. Cells
, vol.
174
,no. Aug.
2017
, pp.
283
291
,
2018
.
3.
G.
Alva
,
Y.
Lin
, and
G.
Fang
, “
An overview of thermal energy storage systems
,”
Energy
, vol.
144
, pp.
341
378
,
2018
.
4.
R.
Tchinda
, “
A review of the mathematical models for predicting solar air heaters systems
,” vol.
13
, pp.
1734
1759
,
2009
.
5.
C.
Kaviarasu
,
D.
Prakash
, “
Review on Phase Change Materials with Nanoparticle in Engineering Applications
,” vol.
9
, no.
4
, pp.
26
36
,
2016
.
6.
M. Y. A.
Jamalabadi
, “
Effects of Brownian Motion on Freezing of PCM Containing Nanoparticles
,” vol.
20
, no.
5
, pp.
1533
1541
,
2016
.
7.
M. M.
Tawfik
, “
Experimental Studies of Nanofluid Thermal Conductivity Enhancement and Applications : A Review *
,” vol.
75
, no. Aug., pp.
1239
1253
,
2017
.
8.
S.
Shaikh
and
K. P.
Hallinan
, “
Carbon Nanoadditives to Enhance Latent Energy Storage of Phase Change Materials
,”
2008
.
9.
A.
Mahmud
,
K.
Sopian
,
M.
Sohif
, and
A. M.
Graisa
, “
Using a Paraffin Wax-Aluminum Compound As a
,” vol.
4
, no. Dec.
2009
, pp.
74
77
,
2009
.
10.
M. M.
Alkilani
,
K.
Sopian
,
S.
Mat
, and
S. D.
Ehsan
, “
Fabrication and Experimental Investigation of PCM Capsules Integrated in Solar Air Heater Institute of Solar Energy Research, Faculty of Engineering
,” vol.
7
, no.
6
, pp.
542
546
,
2011
.
11.
T.
Teng
and
C.
Yu
, “
Characteristics of phase-change materials containing oxide nano-additives for thermal storage
,”
Nanoscale Res. Lett.
, vol.
7
, no.
1
, p.
1
,
2012
.
12.
N. S.
Dhaidan
,
J. M.
Khodadadi
,
T. A.
Al-hattab
, and
S. M.
Al-mashat
, “
Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux
,”
Int. J. Heat Mass Transf.
, vol.
66
, pp.
672
683
,
2013
.
13.
N. S.
Dhaidan
,
J. M.
Khodadadi
,
T. A.
Al-hattab
, and
S. M.
Al-mashat
, “
Experimental and numerical study of constrained melting of n -octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux
,”
Heat Mass Transf.
, vol.
67
, pp.
523
534
,
2013
.
14.
A. T.
Pise
,
A. V
Waghmare
, and
V. G.
Talandage
, “
Heat Transfer Enhancement by Using Nanomaterial in Phase Change Material for Latent Heat Thermal Energy Storage System
,” vol.
2
, no.
2
, pp.
52
57
,
2013
.
15.
J.
Wang
,
H.
Xie
,
Z.
Guo
,
L.
Guan
, and
Y.
Li
, “
Improved thermal properties of paraf fi n wax by the addition of TiO2 nanoparticles
,” vol.
73
, pp.
1541
1547
,
2014
.
16.
M. T.
Chaichan
and
S. H.
Kamel
, “
Using Aluminium Powder with PCM (Paraffin Wax) to Enhance Single Slope Solar Water Distiller Productivity in Baghdad-Iraq Winter Weathers
,” vol.
5
, no.
1
, pp.
251
257
,
2015
.
17.
B. J.
Nabhan
, “
Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage
,” vol.
21
, no.
6
, pp.
37
51
,
2015
.
18.
M. T.
Chaichan
and
H. A.
Kazem
, “
Thermal Conductivity Enhancement by Using Nano-Material in Phase Change Material for Latent Heat Thermal Energy Storage Systems
,” vol.
5
, no.
6
, pp.
48
55
,
2015
.
19.
N. H.
Mohamed
,
F. S.
Soliman
,
H.
El
, and
Y. M.
Moustfa
, “
Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina : Energy storage
,”
Renew. Sustain. Energy Rev.
, vol.
70
, no. Oct.
2015
, pp.
1052
1058
,
2017
.
20.
M. T.
Chaichan
,
R. M.
Hussein
, and
A. M.
Jawad
, “
Thermal Conductivity Enhancement of Iraqi Origin Paraffin Wax by Nano-Alumina
,” vol.
13
, no.
3
, pp.
83
90
,
2017
.
21.
A. L.
Tarish
and
N. T.
Alwan
, “
Experimental Study of Paraffin Wax-Copper Nanoparticles Thermal Storage Material
,” vol.
3
, no.
3
, pp.
11
17
,
2017
.
22.
F. R.
Saeed
 et al, “
Nanomagnetite Enhanced Paraffin for Thermal Energy STORAGE Applications
,” vol.
12
, no.
2
, pp.
273
280
,
2017
.
23.
Z.
Qian
,
H.
Shen
,
X.
Fang
,
L.
Fan
,
N.
Zhao
, and
J.
Xu
, “
Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability
,”
Energy Build.
, vol.
158
, pp.
1184
1188
,
2018
.
24.
K.
Purohit
,
M.
Dhonde
,
K.
Sahu
, and
V. V. S.
Murty
, “
ISSN NO : 2394-8442 Latent heat enhancement using CuO nanoparticles in paraffin for thermal energy storage applications
,” vol.
5
, no.
2
, pp.
798
806
,
2018
.
25.
S. M.
Shalaby
,
H. F.
Abosheiash
,
S. T.
Assar
, and
A. E.
Kabeel
, “
Improvement of Thermal Properties of Paraffin Wax as Latent Heat Storage Material with Direct Solar Desalination Systems by Using Aluminum Oxide Nanoparticles Keywords : Water desalination, Nanoparticles, Thermal conductivity Samples preparation
,” no. June, pp.
28
30
,
2018
.
26.
A.
Mukherjee
, M. S. I,
T. C.
Prathna
, and
N.
Chandrasekaran
, “
Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications
,” pp.
245
251
,
2011
.
27.
A.
Khazaei
,
S.
Nazari
,
G.
Karimi
, and
E.
Ghaderi
, “
Synthesis and Characterization of
γ -Alumina Porous Nanoparticles from Sodium Aluminate Liquor with Two Different Surfactants,” vol.
12
, no.
4
, pp.
207
214
,
2016
.
28.
V.
Piriyawong
,
V.
Thongpool
,
P.
Asanithi
, and
P.
Limsuwan
, “
Preparation and Characterization of Alumina Nanoparticles in Deionized Water Using Laser Ablation Technique
,”
2012
.
29.
W.
Yu
and
S. U. S.
Choi
, “
The role of interfacial layers in the enhanced thermal conductivity of nanofluids : A renovated Maxwell model
,” pp.
167
-
168
, 2003.
30.
L. C. C. and
J. K.
Zhong
, “
Thermal Conductivity Enhancement for Phase Change Storage Media
,” vol.
23
, pp.
91
100
,
1996
.
31.
H. C.
Brinkman
, “
The Viscosity of Concentrated Suspensions and Solutions
,” vol.
571
, pp.
1
2
,
1952
.
This content is only available via PDF.
You do not currently have access to this content.