General Path Planning (GPP) is a challenging problem in the field of mobile robotics due to its complexity. The robots must selected their path from the starting point to the target point with the lowest possible distance, in the least possible time, and with the fewest possible turns and movements. The aim of this research is to achieve best path planning of a mobile robot using the hybrid algorithm. This paper proposed heuristic algorithms for determining the optimal pathway of the robot in a static environment. These algorithms are the Particle Swarming Optimization (PSO), the Ant Colony Optimization (ACO), and the hybrid approach of ACO&PSO. They used to obtain the perfect path for the robot as well as to avoid hitting obstacles that it encounters through its path. Initially, each of the two algorithms is implemented separately in a static environment, and then the hybrid one is implemented. The results are calculated for the two algorithms separately and then that of the hybrid algorithm is calculated. The results obtained for the hybrid algorithm were better than the PSO and ACO algorithms.

1.
A.
Verl
,
A.
Valente
,
S.
Melkote
,
C.
Brecher
,
E.
Ozturk
, and
L. T.
Tunc
, “
Robots in machining
,”
CIRP Ann.
, vol.
68
, no.
2
, pp.
799
822
,
2019
, doi: .
2.
M. N.
Zafar
and
J. C.
Mohanta
, “
Methodology for Path Planning and Optimization of Mobile Robots: A Review
,”
Procedia Comput. Sci.
, vol.
133
, pp.
141
152
,
2018
, doi: .
3.
B. K.
Patle
,
A.
Pandey
,
A.
Jagadeesh
, and
D. R.
Parhi
, “
Path planning in uncertain environment by using fi re fl y algorithm
,”
Def. Technol.
,
2018
, doi: .
4.
W.
Ji
and
L.
Wang
, “
Industrial robotic machining: a review
,”
Int. J. Adv. Manuf. Technol.
, vol.
103
, no.
1–4
, pp.
1239
1255
,
2019
, doi: .
5.
A. A.
Aldair
,
M. T.
Rashid
, and
A. T.
Rashid
, “
Navigation of Mobile Robot with Polygon Obstacles Avoidance Based on Quadratic Bezier Curves
,”
Iran. J. Sci. Technol. Trans. Electr. Eng.
, no.
0123456789
,
2019
, doi: .
6.
A.
Tharwat
,
M.
Elhoseny
,
A. E.
Hassanien
,
T.
Gabel
, and
A.
Kumar
, “
Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm
,”
Cluster Comput.
, vol.
22
, pp.
4745
4766
,
2019
, doi: .
7.
A.
Koubaa
 et al., “
Introduction to mobile robot path planning
,”
Stud. Comput. Intell.
, vol.
772
, pp.
3
12
,
2018
, doi: .
8.
Ahmad
Abbadi
and
Vaclav
Prenosil
, “Safe Path Planning Using Cell Decomposition Approximation,”
Int. Conf. Distance Learn. Simul. Commun.
, no. May,
2015
.
9.
S.
Al Dabooni
and
D.
Hdp
, “
Heuristic Dynamic Programming for Mobile Robot Path Planning Based on Dyna Approach
,” pp.
3723
3730
,
2016
.
10.
N.
Abd-alsabour
and
N.
Abd-alsabour
, “
Hybrid Metaheuristics for Classification Problems Hybrid Metaheuristics for Classification Problems
.”
11.
Q. M.
Nguyen
,
L.
Ngoc
,
M.
Tran
, and
T. C.
Phung
, “
A Study on Building Optimal Path Planning Algorithms for Mobile Robot
*,”
2018 4th Int. Conf. Green Technol. Sustain. Dev.
, pp.
341
346
,
2018
.
12.
T. T.
Mac
,
C.
Copot
,
D. T.
Tran
, and
R.
De Keyser
, “
Heuristic approaches in robot path planning: A survey
,”
Rob. Auton. Syst.
, vol.
86
, pp.
13
28
,
2016
, doi: .
13.
M.
Sood
and
V. K.
Panchal
, “
Meta-heuristic techniques for path planning: Recent trends and advancements
,”
Int. J. Intell. Syst. Technol. Appl.
, vol.
19
, no.
1
, pp.
36
77
,
2020
, doi: .
14.
R.
Kumar
,
L.
Singh
, and
R.
Tiwari
, “
Comparison of Two Meta-Heuristic Algorithms for Path Planning in Robotics
,”
2020 Int. Conf. Contemp. Comput. Appl. IC3A 2020
, pp.
159
162
,
2020
, doi: .
15.
F.
Héliodore
,
A.
Nakib
,
B.
Ismail
,
S.
Ouchraa
, and
L.
Schmitt
, “
Single Solution Based Metaheuristics
,” pp.
1
16
.
16.
Y.
Djenouri
,
D.
Djenouri
,
Z.
Habbas
, and
A.
Belhadi
, “
How to exploit high performance computing in population-based metaheuristics for solving association rule mining problem
,”
Distrib. Parallel Databases
,
2018
, doi: .
17.
R.
Uriol
and
A.
Moran
, “
Mobile robot path planning in complex environments using ant colony optimization algorithm
,”
2017 3rd Int. Conf. Control. Autom. Robot. ICCAR 2017
, pp.
15
21
,
2017
, doi: .
18.
S.
Thabit
and
A.
Mohades
, “
Multi-Robot Path Planning Based on Multi-Objective Particle Swarm Optimization
,”
IEEE Access
, vol.
7
, no. c, pp.
2138
2147
,
2019
, doi: .
19.
A. Q.
Faridi
,
S.
Sharma
,
A.
Shukla
,
R.
Tiwari
, and
J.
Dhar
, “
Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment
,”
Intell. Serv. Robot.
, vol.
11
, no.
2
, pp.
171
186
,
2018
, doi: .
20.
M.
Saraswathi
,
G. B.
Murali
, and
B. B. V. L.
Deepak
, “
Optimal Path Planning of Mobile Robot Using Hybrid Cuckoo Search-Bat Algorithm
,”
Procedia Comput. Sci.
, vol.
133
, no.
6
, pp.
510
517
,
2018
, doi: .
21.
B.
Gunji
,
B. B. V. L.
Deepak
,
M. B. L.
Saraswathi
, and
U. R.
Mogili
, “
Optimal path planning of mobile robot using the hybrid cuckoo–bat algorithm in assorted environment
,”
Int. J. Intell. Unmanned Syst.
, vol.
7
, no.
1
, pp.
35
52
,
2019
, doi: .
22.
T. P.
Vital
,
M. M.
Krishna
,
G. V. L.
Narayana
,
P.
Suneel
, and
P.
Ramarao
,
Empirical Analysis on Cancer Dataset with Machine Learning Algorithms
, vol.
758
, no. August.
Springer
Singbpore
,
2019
.
This content is only available via PDF.
You do not currently have access to this content.