It is always known that nanosatellites, a newly emerging pint-sized form of satellites, feature the smaller envelope size, the lower cost, with the shorter development time. Yet still that, they cope with different issues namely high thermal gradients or different thermal loads. The prediction of thermal behavior is almost conducted by the way of simulation that should be well performed in order to obtain reliable results. This paper aims to describe the different types of heat radiation that the nanosatellite incurs, and then accurately simulate them with consideration or not of the nanosatellite heat dissipation. The nanosatellite’s passive thermal control has been conducted considering the material’s optical coatings change. A preliminary approach consisting of a simple form of the nanosatellite in order to obtain tangible results has been established while envisaging a more complex and complete geometry in the future. Based on the results, the temperatures at both cases, namely the heat-dissipating case and the non-dissipating heat case, are almost at the batteries’ range of operating with minor adjustments to avoid getting out of tolerated temperature limits. Therefore, the results show that temperatures are highly sensitive to the surface coating of the nanosatellite. That is why choosing the surface coating at the early stage of the design is highly recommended.

1.
D.
Selva
et
D.
Krejci
, “
A survey and assessment of the capabilities of Cubesats for Earth observation
”,
Acta Astronaut.
, vol.
74
, p.
50
-
68
, mai
2012
, doi: .
2.
P.
Fortescue
,
G.
Swinerd
, et
J.
Stark
,
Spacecraft systems engineering
, 4th éd.
John Wiley & Sons
,
2011
.
3.
Philippe
,
Poinas
, “
Satellite Thermal Control Engineering
”, in
SME04, ESTEC Thermal & Structure Division
, juin
2004
, p.
66
.
4.
R.
Karam
, “
Satellite thermal control for systems engineers
”,
Am. Inst. Aeronaut. Astronaut. Rest. Va.
, p.
1
100
,
1998
.
5.
W. J.
Larson
et
J. R.
Wertz
, “
Space mission analysis and design
”,
Space Mission Anal. Des. Microcosm Inc Torrance CA
, p.
428
458
,
1992
.
6.
J.
Li
,
S.
Yan
, et
R.
Cai
, “
Thermal analysis of composite solar array subjected to space heat flux
”,
Aerosp. Sci. Technol.
, vol.
27
, no
1
, p.
84
94
,
2013
.
7.
W. A.
Shiroma
et al, “
CubeSats: A bright future for nanosatellites
”,
Cent. Eur. J. Eng. Univ. Hawaii
, vol.
1
, no
1
, p.
9
15
,
2011
.
8.
H.
Heidt
,
J.
Puig-Suari
,
A.
Moore
,
S.
Nakasuka
, et
R.
Twiggs
, “
CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation
”,
14th Annu. USU Conf. Small Satell. North Logan UT
,
2000
.
9.
A.
Akka
et
F.
Benabdelouahab
, “
PASSIVE THERMAL ANALYSIS OF A CUBESAT BY A FINITE ELEMENT MODELING
”,
JP J. Heat Mass Transf.
, vol.
21
, no
1
, p.
133
149
, oct.
2020
, doi: .
10.
A.
Akka
,
F.
Benabdelouahab
, et
R.
Yerrou
, “
EVALUATING THE TEMPERATURE TOGGLING OF A NANOSATELLITE THROUGH A PRELIMINARY PASSIVE THERMAL ANALYSIS
”,
JP J. Heat Mass Transf.
, vol.
24
, no
2
, p.
383
391
, nov.
2021
, doi: .
11.
A.
Akka
,
F.
Benabdelouahab
, et
R.
Yerrou
, “
Nanosatellite case study: Issue of heat dissipation across passive thermal analysis
”,
E3S Web Conf.
, vol.
336
, p.
00057
,
2022
, doi: .
12.
A.
Akka
,
F.
Benabdelouahab
, et
R.
Yerrou
, “
Nanosatellite On-Low-Earth-Orbit Temperature Simulation and its Implication Concerning Extreme Cases
”,
AIP Conf. Proc.
, (In Press).
13.
D. W.
Hengeveld
,
J. E.
Braun
,
E. A.
Groll
, et
A. D.
Williams
, “
Optimal placement of electronic components to minimize heat flux nonuniformities
”,
J. Spacecr. Rockets
, vol.
48
, no
4
, p.
556
563
,
2011
.
14.
M.
Donabedian
et
D. G.
Gilmore
, “
Spacecraft thermal control handbook
”,
Aerosp. Press
, p.
21
69
,
2003
.
15.
P.
Shinde
,
A.
Quintero
,
I.
Tansel
, et
S.
Tosunoglu
, “CubeSat Thermal Analysis», présenté”
30th Florida Conference on Recent Advances in Robotics
,
Florida Atlantic University
,
Boca Raton, Florida
, mai
2017
.
16.
C. B.
VanOutryve
, “
A thermal analysis and design tool for small spacecraft
”,
2008
.
17.
V. L.
Pisacane
, “
The space environment and its effects on space systems
”,
Am. Inst. Aeronaut. Astronaut.
,
2008
.
18.
B. J.
Anderson
,
C. G.
Justus
, et
G. W.
Batts
, “
Guidelines for the selection of near-earth thermal environment parameters for spacecraft design
”,
2001
.
19.
B.
Končar
et
L.
Klobučar
, “
Use of CFD Codes for Calculation of Radiation Heat Transfer: From Validation to Application
”,
Heat Transf.-Models Methods Appl. Intech Open
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.