In this paper, we prove a periodic point result via Bianchini-Grandolfi gauge functions on partial metric spaces. Hence, we improve some results existing in the literature such as the Bianchini-Grandolfi and the Banach fixed point theorems. Finally, we provide an example to show the effectiveness of our result.
REFERENCES
1.
2.
S.
Banach
, Sur les operations dans les ensembles abstraits et leur applications aux equations integrals
, fund. Math
, 3
,(1922
), 133
–181
.3.
R. M.
Bianchini
and M.
Grandolfi
, Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico
, Atti della Accademia Nazionale dei Lincei
, vol. 45
(1968
), pp. 212
–216
.4.
L.B.
Ciric
, On some maps with a nonunique fixed point
, Pull. Inst. Math.
, 17
(1974
), 52
–58
.5.
Z.
Kadelburg
and S.
Radenovic
, Fixed Point and Tripled Fixed Point Theorems under Pata-Type Conditions in Ordered Metric Spaces
, International Journal of Analysis and Applications
6
(2014
), 113
–122
.6.
E.
Karapinar
, Ciric Type Nonunique Fixed Points Results: A Review
, Applied and Computational Mathematics an International Journal
, 1
(2019
), 3
–21
.7.
E.
Karapınar
and S.
Romaguera
, Nonunique fixed point theorems in partial metric spaces
, Filomat
, 27
(7
), (2013
), 1305
–1314
.8.
S. G.
Matthews
, Partial metric topology, in: proceedings of 8th Summer conference on General Topology and Applications
, in Ann. New york Acad. Sci.
, 728
(1994
), 183
–197
.9.
S.
Reich
, Fixed points of contractive functions
, Boll. Unione Mat. Ital.
, 5
(1972
), 26
–42
.10.
S.
Romaguera
, Fixed point theorems for generalized contractions on partial metric spaces
, Topology and its Applications
, 159
(1
), (2012
), 194
–199
.11.
M.
Aslantas
, H.
Sahin
, and D.
Turkoglu
, Some Caristi type fixed point theorems
, The Journal of Analysis
, (2020
), 1
–15
.12.
M.
Aslantas
, Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces
, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
, 2021
, in press.13.
H.
Sahin
, Best proximity point theory on vector metric spaces
, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
, 70
(1
) (2021
), 130
–142
.14.
I.A.
Rus
, Generalized Contractions and Applications. Cluj University Press
, Cluj-Napoca
(2001
).
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)
You do not currently have access to this content.