In the presen paper, we obtain a periodic point theorem for p-contraction mappings on complete metric spaces. Thus, we generalize famous results existing in the literature such as the Popescu and the Banach fixed point theorem. To demonstrate the usefulness of our result, an example is given

1.
S.
Banach
,
Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales
,
Fund. math
3
,
133
181
(
1922
).
2.
M.
Jleli
and
B.
Samet
,
A new generalization of the banach contraction principle
,
Journal of inequalities and applications
2014
,
1
8
(
2014
).
3.
Z.
Kaldeburg
and
S.
Radenovic
,
Fixed point and tripled fixed point theorems under pata-type conditions in ordered metric spaces,
International Journal of Analysis and Applications
6
,
113
122
, (
2014
).
4.
S.
Reich
,
Fixed points of contractive functions,
Boll. Unione Mat. Ital.
5
,
26
42
(
1972
).
5.
N.
Hussain
,
A. E. Al-Mazrooei an J.
Ahmad
,
Fixed point results for generalized (a, r,)−0 contractions with application
,
J. Nonlinear Sci. Appl
10
,
4197
4208
(
2017
).
6.
N.
Mlaiki
,
H.
Aydi
,
N.
Souayah
, and
T.
Abdeljawad
,
Controlled metric type spaces and the related contraction principle
,
Mathematics
6
,
194
, (
2018
).
7.
H.
Işık
,
B.
Mohammadi
,
M. R.
Haddadi
, and
V.
Parvaneh
,
On a new generalization of banach contraction principle with application
, ,
Mathematics
7
,
862
, (
2019
).
8.
O.
Popescu
,
Fixed Point theorems in metric spaces,
Bull. of Transilvania Univ.
50
,
479
482
(
2008
).
9.
L. B.
Ciric
,
On some maps with a nonunique fixed point
,
Publ. Inst. Math
17
,
52
58
(
1974
).
10.
J.
Achari
,
On Ciric non-unique fixed points
,”
Matematǐcki Vesnik
13,
255
257
(
1976
).
11.
B.
Pachpatte
,
On ciric type maps with a nonunique fixed point
, (
1979
).
12.
T.
Senapati
,
L. K.
Dey
,
A.
Chanda
, and
H.
Huang
,
Some non-unique fixed point or periodic point results in js-metric spaces
,
Journal of Fixed Point Theory and Applications
21
,
1
15
(
2019
).
13.
R.
Azennar
,
F.
Ouzine
, and
D.
Mentagui
,
Periodic point and fixed point results for monotone mappings in complete ordered locally convex spaces with application to differential equations,
Adv. Fixed Point Theory
9
,
322
332
(
2019
).
14.
K.
Włodarczyk
,
Set-valued leader type contractions, periodic point and endpoint theorems, quasi-triangular spaces, bellman and volterra equations
,
Fixed Point Theory and Applications
2020
,
1
54
(
2020
).
15.
W.
Onsod
,
T.
Saleewong
, and
P.
Kumam
,
Fixed and periodic point results for generalized geraghty contractions in partial metric spaces with application
,
Thai Journal of Mathematics
18
,
1247
1260
(
2020
).
16.
M.
Jaradat
,
J.
Ahmad
,
C.
Park
, and
Z.
Nustafa
,
Some fixed and periodic point results for generalized contractions with applications,
Boletim da Sociedade Paranaense de Matemática
39
,
67
80
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.