In recent times, increased consumption of fossil fuels due to overpopulation, increasing energy demand have resulted in global warming and climate changes due to the emission of greenhouse gases from these fuels. To compensate for the requirement of fossil fuel, renewable biofuels especially, biodiesel are preferred for satisfying the energy demand. Since biodiesel from edible feedstocks is deemed against "food vs. fuel" policies, first-generation biofuels are not regarded as suitable and sustainable, inspite of growing energy demand. Following this, Second generation biodiesel production from lingo-cellulosic-based feedstocks is the least recommended because of their meticulous procedures and high capital investments. Considering these setbacks, edible feedstocks have been replaced with microbial feedstocks, which are later on used for extracting oil and then transesterified into biodiesel. Even though biodiesel from microbes have their setbacks, they are widely appreciated due to their merits which include short life span, ability to grow on multiple environments and ability to remediate different polluted environmental conditions. Presently, this paper focuses on summarizing the production of biodiesel from various microbial species.

1.
Outlook
,
O. F. A.
(
2010
).
© OECD/FAO 2010. OECD-FAO Agricultural Outlook 2010, 17
.
2.
M.
Munir
,
M.
Ahmad
,
M.
Saeed
,
A.
Waseem
,
A. S.
Nizami
,
S.
Sultana
and
M. I.
Ali
, “
Biodiesel production from novel non-edible caper (Capparis spinosa L.) Seeds oil employing Cu–Ni doped ZrO2 catalyst
,”
Renew. Sustain. Energ. Rev.
,
110558
(
2020
).
3.
M. S.
Elshahed
, “
Microbiological aspects of biofuel production: current status and future directions
,”
J. Adv. Res.
,
1
(
2
),
103
111 9
(
2010
).
4.
G. R.
Srinivasan
,
V.
Shankar
,
S. Chandra
Sekharan
,
M.
Munir
,
D.
Balakrishnan
,
A.
Mohanam
and
R.
Jambulingam
, “
Influence of fatty acid composition on process optimization and characteristics assessment of biodiesel produced from waste animal fat
,”
Energ. Source. Part A
,
1
19
(
2020
).
5.
S. P.
Singh
and
D.
Singh
, “
Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review
,”
Renew. Sustain. Energ. Rev.
,
14
(
1
),
200
216
(
2010
).
6.
G. R.
Srinivasan
and
R.
Jambulingam
, R, “
Comprehensive study on biodiesel produced from waste animal fats-a review
,”
Journal of Environmental Science and Technology
,
11
(
3
),
157
66
(
2018
).
7.
M.
Guo
,
W.
Song
and
J.
Buhain
, “
Bioenergy and biofuels: History, status, and perspective
,”
Renew. Sustain. Energy.
42
,
712
725
(
2015
).
8.
G. R.
Srinivasan
,
S.
Palani
, S. and
R.
Jambulingam
, R, “
Biodiesel production from waste animal fat using a novel catalyst HCA immobilized AuNPS amine grafted SBA-15
,”
Journal of Engineering Science and Technology
,
13
(
8
),
2632
2643
(
2018
).
9.
M.
Munir
,
M.
Saeed
,
M.
Ahmad
,
A.
Waseem
,
S.
Sultana
,
M.
Zafar
, and
G. R.
Srinivasan
, “
Optimization of novel Lepidium perfoliatum Linn. Biodiesel using zirconium-modified montmorillonite clay catalyst
,”
Energ. Source. Part A.
,
1
16
(
2019
).
10.
R.
Jambulingam
,
M.
Shalma
and
V.
Shankar
, “
Biodiesel production using lipase immobilized functionalized magnetic nanocatalyst from oleaginous fungal lipid
,”
J. Clean. Prod.
,
215
,
245
258
(
2019
)
11.
J.
Ben-Iwo
,
V.
Manovic
and
P.
Longhurst
, “
Biomass resources and biofuels potential for the production of transportation fuels in Nigeria
,”
Renew. Sustain. Energ. Rev.
,
63
,
172
192
(
2016
).
12.
M.
Anand
,
B.
Deepanraj
,
J.
Ranjitha
,
M. M.
Noor
, “
Biodiesel Production from Mixed Elengi and Pongamia Oil using Calcined Waste Animal Bone as a Novel Heterogeneous Catalyst
,”
IOP Conf. Series: Materials Science and Engineering
,
923
,
012063
(
2020
).
13.
M. S.
Gad
,
A. S.
El-Shafay
, and
H. A.
Hashish
, “
Assessment of diesel engine performance, emissions and combustion characteristics burning biodiesel blends from Jatropha seeds
,”
Process. Saf. Environ.
,
147
,
518
526
(
2021
)
14.
R.
Giridharan
,
A. V.
Rajan
, and
B. R.
Krishnan
, “
Performance and emission characteristics of algae oil in diesel engine
,”
Materials Today: Proceedings
,
37
,
576
579
(
2021
).
15.
C. B.
John
,
S. A.
Raja
,
B.
Deepanraj
,
H.C.
Ong
, “
Palm stearin biodiesel: preparation, characterization using spectrometric techniques and the assessment of fuel properties
,”
Biomass Conversion and Biorefinery
(DOI:).
16.
A
Ashok
,
A.
Alagumalai
,
O. H.
Chyuan
, and
P. T. K.
Le
, “
Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications
,”
Energ. Convers. Manage.
113655
(
2020
).
17.
R.
Jambulingam
,
V.
Shankar
,
S.
Palani
, and
G. R.
Srinivasan
, “
Effect of dominant fatty acid esters on emission characteristics of waste animal fat biodiesel in CI engine
,”
Frontiers in Energy Research
,
7
,
63
(
2019
).
18.
B.
Banković-Ilić
,
I. J.
Stojković
,
O. S.
Stamenković
,
V. B.
Veljkovic
, and
Y.T.
Hung
, “
Waste animal fats as feedstocks for biodiesel production
,”
Renew. Sustain. Energy Rev.
,
32
,
238
254
(
2014
).
19.
J.
Ranjitha
,
S. G
Raghavendra
,
S.
Vijayalakshmi
, and
B.
Deepanraj
, “
Production, optimisation and engine characteristics of beef tallow biodiesel rendered from leather fleshing and slaughterhouse wastes
,”
Biomass Conversion and Biorefinery
,
10
,
675
688
(
2020
).
20.
R.
Kwangdinata
,
I.
Raya
, and
M.
Zakir
, “
Production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method
,”
The Scientific World Journal
, (
2014
).
21.
S. A.
Kring
,
X.
Xia
,
S. E.
Powers
, and
M. R.
Twiss
, “
Crustacean zooplankton in aerated wastewater treatment lagoons as a potential feedstock for biofuel
,”
Environ. Technol.
,
34
(
13-14
),
1973
1981
(
2013
).
22.
C. S.
Calheiros
,
P. M.
Castro
,
A.
Gavina
, and
R.
Pereira
, “
Toxicity abatement of wastewaters from tourism units by constructed wetlands
,”
Water
,
11
(
12
),
2623
(
2019
).
23.
M.
Rossi
,
A.
Amaretti
,
S.
Raimondi
, and
A.
Leonardi
, “
Getting lipids for biodiesel production from oleaginous fungi
,”
Biodiesel-Feedstocks and Processing Technologies,”
1
,
72
74
(
2011
).
24.
A
Patel
,
N.
Arora
,
K.
Sartaj
,
V.
Pruthi
, and
P. A.
Pruthi
, “
Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of vaanious non-edible lignocellulosic biomasses
,”
Renew. Sustain. Energy Rev.
,
62
,
836
855
(
2016
).
25.
G.
Strobel
, “
The story of mycodiesel
,”
Curr. Opin. Microbiol.
,
19
,
52
58
(
2014
)
26.
C. B.
John
,
S. Antony
Raja
,
J.
Ranjitha
,
B.
Deepanraj
, “
Estimation of fuel properties and characterization of hemp biodiesel using spectrometric techniques
,”
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
, (DOI:).
27.
F.
Arous
,
I. E.
Triantaphyllidou
,
T.
Mechichi
,
S.
Azabou
,
M.
Nasri
, M., and
G.
Aggelis
, “
Lipid accumulation in the new oleaginous yeast Debaryomyces etchellsii correlates with ascosporogenesis
,”
Biomass Bioenerg.
,
80
,
307
315
(
2015
).
28.
X.
Yu
,
Y.
Zheng
,
K. M.
Dorgan
, and
S.
Chen
, “
Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid
,”
Bioresource Technol.
,
102
(
10
),
6134
6140
(
2011
).
29.
S. P.
Kumar
, and
R.
Banerjee
, “
Optimization of lipid enriched biomass production from oleaginous fungus using response surface methodology
,” (
2013
).
30.
S.
Saran
, S.,
A. J.
Mathur
,
A.
,
Dalal
, and
R. K.
Saxena
, “
Process optimization for cultivation and oil accumulation in an oleaginous yeast Rhodosporidium toruloides A29
,”
Fuel
,
188
,
324
331
(
2017
).
31.
D. E.
Leiva-Candia
,
S.
Pinzi
,
M. D.
Redel-Macías
,
A.
Koutinas
,
C.
Webb
, and
M. P.
Dorado
, “
The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel
,”
Fuel
,
123
,
33
42
(
2014
).
32.
C.
Xia
,
J.
Zhang
,
W.
Zhang
, and
B.
Hu
, “
A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides
,”
Biotechnology for Biofuels
,
4
(
1
),
1
10
(
2011
).
33.
G. V.
Subhash
, and
S. V.
Mohan
, “
Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate
,”
Bioresource Technol.
,
102
(
19
),
9286
9290
(
2011
).
34.
C.
Saenge
,
B.
Cheirsilp
,
T. T.
Suksaroge
, and
T.
Bourtoom
, “
Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids
,”
Process Biochem.
,
46
(
1
),
210
218
(
2011
).
35.
P.
Dey
,
J.
Banerjee
, and
M. K.
Maiti
, “
Comparative lipid profiling of two endophytic fungal isolates– Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock
,”
Bioresource Technol.
,
102
(
10
),
5815
5823
(
2011
).
36.
M. M. K.
Bagy
,
M.
Abd-Alla
,
F. M.
Morsy
, and
E. A.
Hassan
, “
Two stage biodiesel and hydrogen production from molasses by oleaginous fungi and Clostridium acetobutylicum ATCC 824
,”
Int. J. Hydrogen Energ
,
39
(
7
),
3185
3197
(
2014
).
37.
K. K.
Sharma
,
H.
Schuhmann
, and
P. M.
Schenk
, “
High lipid induction in microalgae for biodiesel production
,”
Energies
,
5
(
5
),
1532
1553
(
2012
).
38.
S. A.
Shafiq
, “
Biodiesel production by oleaginous fungi before and after exposing of UV light
,”
International Journal of ChemTech Research
,
10
(
12
),
357
363
(
2017
).
39.
R.
Poontawee
,
W.
Yongmanitchai
, and
S.
Limtong
, “
Efficient oleaginous yeasts for lipid production from lignocellulosic sugars and effects of lignocellulose degradation compounds on growth and lipid production
,”
Process Biochem.
,
53
,
44
60
(
2017
).
40.
M.
Jin
,
P. J.
Slininger
,
B.
Dien
,
B. S.
,
Waghmode
,
B. R.
Moser
,
A.
Orjuela
, and
V.
Balan
, “
Microbial lipid- based lignocellulosic biorefinery: feasibility and challenges
,”
Trends. Biotechnol.
33
(
1
),
43
54
(
2015
).
41.
X.
Yang
,
G.
Jin
,
Z.
Gong
,
H.
Shen
,
F.
Bai
, and
Z. K.
Zhao
, “
Recycling microbial lipid production wastes to cultivate oleaginous yeasts
,”
Bioresource Technol.
,
175
,
91
96
(
2015
).
42.
Z.
Ruan
,
M.
Zanotti
,
X.
Wang
,
C.
Ducey
, and
Y.
Liu
, Y, “
Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production
,”
Bioresource Technol.
,
110
,
198
205
(
2012
).
43.
B.
Cheirsilp
, and
S.
Kitcha
, “
Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: fed-batch and repeated-batch fermentations
,”
Ind. Crop. Prod.
,
66
,
73
80
(
2015
).
44.
Y.
Zheng
,
X.
Yu
,
J.
Zeng
, and
S.
Chen
, “
Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw
,”
Biotechnology for Biofuels
,
5
(
1
),
1
10
(
2012
).
45.
S.
Kitcha
, and
B.
Cheirsilp
, “
Bioconversion of lignocellulosic palm byproducts into enzymes and lipid by newly isolated oleaginous fungi
,”
Biochem. Eng. J.
,
88
,
95
100
(
2014
).
46.
A.
Tanimura
,
M.
Takashima
,
T.
Sugita
,
R.
Endoh
,
M.
Kikukawa
,
S.
Yamaguchi
, and
J.
Shima
, “
Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production
,”
Bioresource Technol.
,
153
,
230
235
(
2014
).
47.
S. M.
Harde
,
Z.
Wang
,
M.
Horne
,
J. Y.
Zhu
, and
X.
Pan
, “
Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina
,”
Fuel
,
175
,
64
74
(
2016
).
48.
M.
Guerfali
,
I.
Ayadi
,
A.
Belhassen
,
A.
Gargouri
, and
H.
Belghith
, “
Single cell oil production by Trichosporon cutaneum and lignocellulosic residues bioconversion for biodiesel synthesis
,”
Process Saf. Environ
,
113
,
292
304
(
2018
).
49.
A.
Patel
,
N.
Arora
,
J.
Mehtani
,
V.
Pruthi
, and
P. A.
Pruthi
, “
Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production
,”
Renew. Sustain. Energ. Rev.
,
77
,
604
616
(
2017
).
50.
F. C.
Santos-Fo
,
T. P.
Fill
,
J.
Nakamura
,
M. R.
Monteiro
, and
E.
Rodrigues-Fo
, “
Endophytic fungi as a source of biofuel precursors
,”
J. Microbiol. Biotechn.
,
21
(
7
),
728
733
(
2011
).
51.
B. D.
Wahlen
,
M. R.
Morgan
,
A. T.
McCurdy
,
R. M.
Willis
,
M. D.
Morgan
,
D. J.
Dye
, and
L. C.
Seefeldt
, “
Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions
,”
Energ. Fuel
,
27
(
1
),
220
228
(
2013
).
52.
M.
Siaut
,
S.
Cuiné
,
C.
Cagnon
,
B.
Fessler
,
M.
Nguyen
,
P.
Carrier
, and
G.
Peltier
, “
Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves
,”
BMC Biotechnol.
,
11
(
1
),
1
15
(
2011
).
53.
U.S. Environmental Protection Agency. 13 January 2013, posting date. Renewable fuel standard (RFS). U.S. Environmental Protection Agency, Washington, DC
54.
L.
Christenson
, and
R.
Sims
, “
Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts
,”
Biotechnol. Adv.
,
29
(
6
),
686
702
(
2011
).
55.
J. J.
Milledge
, and
S.
Heaven
, “
A review of the harvesting of micro-algae for biofuel production
,”
Rev. Environ. Sci. Bio.
,
12
(
2
),
165
178
(
2013
).
56.
M. O. P.
Fortier
,
G. W.
Roberts
,
S. M.
Stagg-Williams
, and
B. S.
Sturm
, “
Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae
,”
Appl. Energ.
,
122
,
73
82
(
2014
).
57.
T.
Suganya
,
M.
Varman
,
H. H.
Masjuki
, and
S.
Renganathan
, “
Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach
,”
Renew. Sust. Energ. Rev.
,
55
,
909
941
(
2016
).
58.
S. S.
Merchant
,
J.
Kropat
,
B.
Liu
,
J.
Shaw
,
J.
Warakanont
, TAG, You're it! “
Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation
,”
Curr. Opin. Biotech.
,
23
(
3
),
352
363
(
2012
).
59.
R. J.
Powell
, and
R. T.
Hill
, “
Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP113
,”
Appl. Environ.Microb.
,
79
(
19
),
6093
6101
(
2013
).
60.
C.
Ratledge
,
J. P.
Wynn
, “
The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms
,”
Adv. Appl. Microbiol.
,
51
,
1
52
(
2002
).
61.
A.
Demirbas
, “
Importance of biodiesel as transportation fuel
,”
Energy Policy
,
35
(
9
),
4661
4670
(
2007
).
62.
M. S.
Elshahed
, “
Microbiological aspects of biofuel production: current status and future directions
,”
Journal of advanced research
,
1
(
2
),
103
111
(
2010
).
63.
M.
Kavšček
,
G.
Bhutada
,
T.
Madl
, and
K.
Natter
, K. “
Optimization of lipid production with a genome-scale model of Yarrowia lipolytica
,”
BMC Syst. Biol.
,
9
(
1
),
1
13
(
2015
).
64.
M.
Cea
,
N.
Sangaletti-Gerhard
,
P.
Acuña
,
I.
Fuentes
,
M.
Jorquera
,
K.
Godoy
, and
R.
Navia
, “
Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production
,”
Biotechnology Reports
,
8
,
116
123
(
2015
).
65.
V.
Koppolu
, and
V. K.
Vasigala
, “
Role of Escherichia coli in biofuel production
,”
Microbiology Insights
,
9
, MBI-S10878 (
2016
).
66.
E. R.
Olukoshi
, and
N. M.
Packter
, “
Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics
,”
Microbiology+
,
140
(
4
),
931
943
(
1994
).
67.
M. K.
Gouda
,
S. H.
Omar
, and
L. M.
Aouad
, “
Single cell oil production by Gordonia sp. DG using agro- industrial wastes
,”
World J. Microb. Biot.
,
24
(
9
),
1703
1711
(
2008
).
68.
Voss
, and
A.
Steinbüchel
, “
High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale
,”
Appl. Microbol. Biot.
,
55
(
5
),
547
555
(
2001
).
69.
M.
Wayman
,
A.D.
Jenkins
,
A. G.
Kormendy
,
“Bacterial production of fats and oils.
In:
Ratledge
C
,
Dawson
P
,
Rattray
J
(eds)
Biotechnology for the Oils and Fats Industry
,” American Oil Chemists’ Society (AOCS) (
1984
).
70.
H. M.
Alvarez
, “
Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria
,”
Int Biodeter Biodegr
,
52
(
1
),
35
42
(
2003
).
71.
T.
Katayama
,
M.
Kanno
,
N.
Morita
,
T.
Hori
,
T.
Narihiro
,
Y.
Mitani
, and
Y.
Kamagata
, “
An oleaginous bacterium that intrinsically accumulates long-chain free fatty acids in its cytoplasm
,”
Appl. Environ. Microb.
,
80
(
3
),
1126
1131
(
2014
).
72.
M.
Kanno
,
T.
Katayama
,
N.
Morita
,
H.
Tamaki
,
S.
Hanada
, and
Y.
Kamagata
,
“Catenisphaera adipataccumulans gen. nov., sp. nov., a member of the family Erysipelotrichaceae isolated from an anaerobic digester
,”
In. J. Syst. Evol. Micr.
,
65
(
3
),
805
810
(
2015
).
73.
J. O.
Eberly
,
D. B.
Ringelberg
, and
K. J.
Indest
, “
Physiological characterization of lipid accumulation and in vivo ester formation in Gordonia sp. KTR9
,”
J. Ind. Microbiol. Biot.
,
40
(
2
),
201
208
(
2013
).
74.
C.
McCarthy
, “
Utilization of palmitic acid by Mycobacterium avium
,”
Infect. Immun.
,
4
(
3
),
199
204
(
1971
).
75.
H. M.
Alvarez
,
R.
Kalscheuer
,
A.
Steinbüchel
, “
Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol
,”
Lipid/Fett
,
99
(
7
),
239
246
(
1997
).
76.
M. A.
Hernández
,
W. W.
Mohn
,
E.
Martínez
,
E.
Rost
,
A. F.
Alvarez
, and
H. M.
Alvarez
, “
Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism
,”
BMC Genomics
,
9
(
1
),
1
14
(
2008
).
77.
M.
Wältermann
,
A.
Hinz
,
H.
Robenek
,
D.
Troyer
,
R.
Reichelt
,
U.
Malkus
, and
A.
Steinbüchel
, “
Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up
,”
Mol. Microbiol.
,
55
(
3
),
750
763
(
2005
).
78.
M.
Kosa
, and
A. J.
Ragauskas
,
Bioconversion of lignin model compounds with oleaginous Rhodococci,
Applied Microbiol and Biot.
,
93
(
2
),
891
900
(
2012
).
79.
Z.
Wei
,
G.
Zeng
,
F.
Huang
,
M.
Kosa
,
Q.
Sun
,
X.
Meng
, and
A. J.
Ragauskas
, “
Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates
,”
Applied Microbiol. Biot.
,
99
(
17
),
7369
7377
(
2015
).
80.
S.
Kumar
,
N.
Gupta
, and
K.
Pakshirajan
, “
Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application
,”
Journal of Environmental Chemical Engineering
,
3
(
3
),
1630
1636
(
2015
).
81.
M.
Kosa
,
A. J.
Ragauskas
, “
Lignin to lipid bioconversion by oleaginous Rhodococci
,”
Green chem.
,
15
(
8
),
2070
2074
(
2013
).
82.
Z.
Wei
,
G.
Zeng
,
F.
Huang
,
M.
Kosa
,
D.
Huang
, and
A. J.
Ragauskas
, “
Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069
,”
Green Chem.
,
17
(
5
),
2784
2789
(
2015
).
83.
T. Wells
Jr
,
Z.
Wei
, and
A.
Ragauskas
, “
Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069
,”
Biomass. Bioenerg.
,
72
,
200
205
(
2015
).
84.
S. A.
Shields-Menard
,
M.
Amirsadeghi
,
B.
Sukhbaatar
,
E.
Revellame
, E.,
R.
Hernandez
,
J. R.
Donaldson
, and
W. T.
French
, “
Lipid accumulation by Rhodococcus rhodochrous grown on glucose
,”
J. Ind. Microbiol. Biot.
,
42
(
5
),
693
699
(
2015
).
85.
A.
Röttig
,
P.
Hauschild
,
M. H
Madkour
,
A. M.
Al-Ansari
,
N. H
Almakishah
,
A.
Steinbüchel
, “
Isolation of lipid-accumulating bacteria from desert soil
,”
Submitted for publication,”
(
2016
).
86.
H. M.
Alvarez
,
O. H.
Pucci
, and
A.
Steinbüchel
, “
Lipid storage compounds in marine bacteria
,”
Appl. Microbiol. Biot.
,
47
(
2
),
132
139
(
1997
).
87.
K. W.
Cho
, and
S. J.
Mo
, “
Screening and characterization of eicosapentaenoic acid-producing marine bacteria
,”
Biotechnol. Lett.
,
21
(
3
),
215
218
(
1999
).
88.
R.
Kalscheuer
, and
A.
Steinbüchel
, “
A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1
,”
J. Biol. Chem.
,
278
(
10
),
8075
8082
(
2003
).
89.
S.
Santala
,
E.
fimova
,
V.
Kivinen
,
A.
Larjo
,
T.
Aho
,
M.
Karp
, and
V.
Santala
, “
Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering
,”
Microb. Cell Fact.
,
10
(
1
),
1
10
(
2011
).
90.
L. M.
Fixter
,
M. N.
Nagi
,
J. G.
Mccormack
, and
C. A.
Fewson
, “
Structure, distribution and function of wax esters in Acinetobacter calcoaceticus
,”
Microbiology+
,
132
(
11
),
3147
3157
(
1986
).
91.
T.
Ishige
,
A.
Tani
,
K.
Takabe
,
K.
Kawasaki
,
Y.
Sakai
, and
N.
Kato
, “
Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase
,”
Appl. Environ. Microb.
,
68
(
3
),
1192
1195
(
2002
).
92.
L. Anantha
Raman
,
B.
Deepanraj
,
S.
Rajakumar
,
V.
Sivasubramanian
, “
Experimental Investigation on Performance, Combustion and Emission Analysis of a Direct Injection Diesel Engine fuelled with Rapeseed Oil Biodiesel
,”
Fuel
,
246
,
69
74
(
2019
).
93.
R.
Bredemeier
,
R.
Hulsch
,
J. O.
Metzger
, and
L.
Berthe-Corti
, “
Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis
,”
Mar. Biotechnol.
,
5
(
6
),
579
583
(
2003
).
94.
L.
Bruno
,
F.
Di Pippo
,
S.
Antonaroli
,
A.
Gismondi
,
C.
Valentini
, and
P.
Albertano
, “
Characterization of biofilm-forming cyanobacteria for biomass and lipid production
,”
J. Appl. Microbiol.
,
113
(
5
),
1052
1064
(
2012
).
95.
K.
Pádrová
,
J.
Lukavský
,
L.
Nedbalová
,
A.
Čejková
,
T.
Cajthaml
,
K.
Sigler
, and
T.
Řezanka
, “
Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae
,”
J. Appl. Phycol.
,
27
(
4
),
1443
1451
(
2015
).
96.
S. E.
Karatay
, and
G.
Dönmez
, “
Microbial oil production from thermophile cyanobacteria for biodiesel production
,”
Appl. Energ.
,
88
(
11
),
3632
3635
(
2011
).
97.
B. M.
Barney
,
B. D.
Wahlen
,
E.
Garner
,
J.
Wei
,
an L. C.
Seefeldt
, “
Differences in substrate specificities of five bacterial wax ester synthases
,”
Appl. Environ. Microb.
,
78
(
16
),
5734
5745
(
2012
).
98.
E. M.
Lenneman
,
J. M.
Ohlert
,
N. P.
Palani
, and
B. M.
Barney
, “
Fatty alcohols for wax esters in Marinobacter aquaeolei VT8: two optional routes in the wax biosynthesis pathway
,”
Appl. Environ. Microb.
,
79
(
22
),
7055
7062
(
2003
).
99.
K.
Bryn
,
E.
Jantzen
, and
K.
Bøvre
, “
Occurrence and patterns of waxes in Neisseriaceae
,”
Microbiology+
,
102
(
1
),
33
43
(
1977
).
100.
E. C.
Francisco
,
T. T.
Franco
,
R.
Wagner
, and
E.
Jacob-Lopes
, “
Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria
,”
Bioproc. Biosyst Eng.
,
37
(
8
),
1497
1505
(
2014
).
101.
S.
Modiri
,
H.
Sharafi
,
L.
Alidoust
,
H.
Hajfarajollah
,
O.
Haghighi
,
A.
Azarivand
, and
K. A.
Noghabi
, “
Lipid production and mixotrophic growth features of cyanobacterial strains isolated from various aquatic sites
,”
Microbiology+
,
161
(
3
),
662
673
(
2015
).
102.
R. K.
Bharti
,
S.
Srivastava
, and
I. S.
Thakur
, “
Production and characterization of biodiesel from carbon dioxide concentrating chemolithotrophic bacteria, Serratia sp
.,”
ISTD04. Bioresource Technol.
,
153
,
189
197
(
2014
).
103.
P.
Kaiwan-arporn
,
P. D.
Hai
,
N. T.
Thu
, and
A. P.
Annachhatre
, “
Cultivation of cyanobacteria for extraction of lipids
,”
Biomass Bioenerg.
,
44
,
142
149
(
2012
).
104.
B.
Deepanraj
,
P.
Lawrence
,
R.
Sivashankar
and
V.
Sivasubramanian
, “
Analysis of preheated crude palm oil, palm oil methyl ester and its blends as fuel in diesel engine
,”
Int. J. Ambient Energy
37
(
5
),
495
500
(
2016
).
105.
B.
Deepanraj
,
M.
Srinivas
,
N.
Arun
,
G.
Sankaranarayanan
,
P. Abdul
Salam
, “
Comparison of Jatropha and Karanja biofuels on their combustion characteristics
,”
Int. J. Green Energy
,
14
,
1231
1237
(
2017
).
106.
V. K.
Patel
,
D.
Maji
,
A. K.
Singh
,
M. R.
Suseela
,
S.
Sundaram
, and
A.
Kalra
, “
A natural plant growth promoter, calliterpenone, enhances growth and biomass, carbohydrate, and lipid production in cyanobacterium Synechocystis PCC 6803
,”
J. Appl. Phycol.
,
26
(
1
),
279
286
(
2014
).
107.
Y.
Li
,
D.
Han
,
G.
Hu
,
D.
Dauvillee
,
M.
Sommerfeld
,
S.
Ball
, and
Q.
Hu
, “
Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol
,”
Metab. Eng.
,
12
(
4
),
387
391
(
2010
).
108.
L. Anantha
Raman
,
S.
Rajakumar
,
B.
Deepanraj
,
L.
Paradeshi
, “
Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation
,”
Thermal Science
,
21
(Supplement 2),
S435
S441
(
2017
).
109.
M. A.
Hazrat
,
M. G.
Rasul
, and
M. M. K.
Khan
, “
Lubricity improvement of the ultra-low sulfur diesel fuel with the biodiesel
,”
Energy Procedia
,
75
,
111
117
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.