Silver nanoparticles (AgNPs) are widely developed because of their unique optical, electrical, and photochemical properties. In the nanoparticle synthesis reaction, optimum conditions are needed to obtain desired nanoparticles with a certain shape and size. In this study, the synthesis reaction of nanoparticles was carried out using the polyol method with a modification, i.e by changing the temperature reaction to below than the normal temperature method in a polyol synthesis (140°C to 100°C). In this study, the synthesis of AgNPs was carried out using ethylene glycol (EG) as a reaction medium and also reducing agent poly (vinylpyrrolidone) (PVP, Mw: 55,000) as a capping agent, and silver nitrate (AgNO3) as a precursor with the addition of hydrochloric acid (HCl) as an additive. Here the concentration of AgNO3 dan HCl was varied to control either size or shape of AgNPs. The resulted AgNPs were characterized using UV-vis spectrophotometer, Transmission Electron Microscopy (TEM), and X-Ray Diffraction (XRD). The UV-vis spectra data show that the concentration of HCl decreased the reduction rate of Ag+ ions to Ag atoms which were due to the etching process conducted by the Cl-/O2 pair in the solution. The XRD data show the formation of AgNPs together with the presence of AgCl crystal structure. The TEM results indicate the formation of AgNPs with varying sizes depending on the concentration of HCl and AgNO3 precursor, while that for shape remains unchanged.

1.
B.
Ajitha
,
Y. A. Kumar
Reddy
,
P. S.
Reddy
,
H. J.
Jeon
, and
C. W.
Ahn
, “
Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor
,”
RSC Adv.
, vol.
6
, no.
42
, pp.
36171
36179
,
2016
, doi: .
2.
Q.
Zhang
 et al., “
Seed-mediated synthesis of ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties
,”
J. Am. Chem. Soc.
, vol.
132
, no.
32
, pp.
11372
11378
,
2010
, doi: .
3.
G.
Consumption
,
F.
Challenges
,
M. R.
Salim
,
A. H.
Kueh
,
T.
Hadibarata
, and
H.
Nur
, “
A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges Achmad Sya fi uddin
,” pp.
732
756
,
2017
, doi: .
4.
H. Q.
Wahyudi
T,
Sugiyama
Doni
, “
Sintesis nanopartikel perak dan uji aktivitasnya
,”
Arena Tekst.
, vol.
26
, no.
1
, pp.
55
60
,
2011
, doi: .
5.
B.
Wiley
,
Y.
Sun
,
B.
Mayers
, and
Y.
Xia
, “
Shape-controlled synthesis of metal nanostructures: The case of silver
,”
Chem. - A Eur. J.
, vol.
11
, no.
2
, pp.
454
463
,
2005
, doi: .
6.
Y.
Sun
and
Y.
Xia
, “
Shape-Controlled Synthesis of Gold and Silver Nanoparticles
.,”
ChemInform
, vol.
34
, no.
10
, pp.
2176
2180
,
2003
, doi: .
7.
Z.
Chen
,
T.
Balankura
,
K. A.
Fichthorn
, and
R. M.
Rioux
, “
Revisiting the Polyol Synthesis of Silver Nanostructures: Role of Chloride in Nanocube Formation
,”
ACS Nano
, vol.
13
, no.
2
, pp.
1849
1860
,
2019
, doi: .
8.
Z.
Chen
,
J. W.
Chang
,
C.
Balasanthiran
,
S. T.
Milner
, and
R. M.
Rioux
, “
Anisotropic Growth of Silver Nanoparticles Is Kinetically Controlled by Polyvinylpyrrolidone Binding
,”
J. Am. Chem. Soc.
, vol.
141
, no.
10
, pp.
4328
4337
,
2019
, doi: .
9.
H. I.
Sang
,
T. L.
Yun
,
B.
Wiley
, and
Y.
Xia
, “
Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity
,”
Angew. Chemie - Int. Ed.
, vol.
44
, no.
14
, pp.
2154
2157
,
2005
, doi: .
10.
B.
Wiley
,
T.
Herricks
,
Y.
Sun
, and
Y.
Xia
, “
Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons
,”
Nano Lett.
, vol.
4
, no.
9
, pp.
1733
1739
,
2004
, doi: .
11.
F.
Wu
,
W.
Wang
,
Z.
Xu
, and
F.
Li
, “
Bromide ( Br ) - Based Synthesis of Ag Nanocubes with High-Yield
,”
Nat. Publ. Gr.
, pp.
1
7
,
2015
, doi: .
12.
D. K.
Bhui
,
H.
Bar
,
P.
Sarkar
,
G. P.
Sahoo
,
S. P.
De
, and
A.
Misra
, “
Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution
,”
J. Mol. Liq.
, vol.
145
, no.
1
, pp.
33
37
,
2009
, doi: .
13.
E.
Yusniyanti
and
K.
Kurniati
, “
Analisa Puncak Banjir Dengan Metode MAF (Studi Kasus Sungai Krueng Keureuto
),”
EINSTEIN e-JOURNAL
, vol.
5
, no.
1
,
2017
, doi: .
14.
E. S.
Dodsworth
,
M.
Hasegawa
,
M.
Bridge
, and
W.
Linert
, “
Solvatochromism
,”
Compr. Coord. Chem. II
, vol.
2
, pp.
351
365
,
2004
, doi: .
15.
I. M.
Yakutik
,
G. P.
Shevchenko
, and
S. K.
Rakhmanov
, “
The formation of monodisperse spherical silver particles
,”
Colloids Surfaces A Physicochem. Eng. Asp.
, vol.
242
, no.
1–3
, pp.
175
179
,
2004
, doi: .
16.
Khosiatun
, “Biosintesis Nanopartikel Perak Dengan Reduktor Kulit Pisang Kepok ( Musa paradisiaca Linn. ) dan Laju Pembentukannya,”
Skripsi, no. Semarang
, p.
Universitas Negeri Semarang
,
2016
.
17.
W.
El Hotaby
,
H. H. A.
Sherif
,
B. A.
Hemdan
,
W. A.
Khalil
, and
S. K. H.
Khalil
, “
Assessment of in situ- prepared polyvinylpyrrolidone-silver nanocomposite for antimicrobial applications
,”
Acta Phys. Pol. A
, vol.
131
, no.
6
, pp.
1554
1560
,
2017
, doi: .
This content is only available via PDF.
You do not currently have access to this content.