Lithium-ion battery (LIB) as one of the important energy storage devices and attracts attention due to its high specific capacity and long cycling life. Among several cathode materials studied, spinel LiMn2O4 is promising due to its great advantages such as abundant precursor, low cost, environmental friendliness, high working voltage and intrinsic thermal stability under severe environmental conditions. In this study, LiMn2O4 was prepared from manganese-based fertilizer with the addition of oxalic acid, sodium hydroxide, and soda ash as precipitant. All of the samples were characterized using XRD, FTIR and SEM. The LiMn2O4 structure was successfully formed based on the XRD test results. SEM results LiMn2O4 showed that the material has micron sized polyhedral shape, specifically octahedral shape. EDX study shows there is no impurities. Charge and discharge analysis of as obtained LiMn2O4 using artificial graphite as the anode shows a charge capacity of 116 mAh/g and a discharge capacity of 115 mAh/g which is an outstanding result since an economical and abundant fertilizer was used as the main raw materials.

1.
Martinez
S
,
Sobrados
I
,
Tonti
D
,
Amarilla
JM
,
Sanz
J.
Chemical vs. electrochemical extraction of lithium from the Li-excess Li1.10Mn1.9004 spinel followed by NMR and DRX techniques
.
Phys Chem Chem Phys.
2014
;
16
(
7
):
3282
91
.
2.
Cao
Z
,
Wei
B.
Fragmented carbon nanotube macrofilms as adhesive conductors for lithium-ion batteries
.
ACS Nano.
2014
;
8
(
3
):
3049
59
.
3.
Wang
X
,
Wang
H
,
Wen
J
,
Tan
Y
,
Zeng
Y.
Surface modification of LiMn2O4 cathode with LaCo03 by a molten salt method for lithium ion batteries
.
Ceram Int [Internet].
2021
;
47
(
5
):
6434
41
. Available from:
4.
Abou-Rjeily
J
,
Bezza
I
,
Laziz
NA
,
Autret-Lambert
C
,
Sougrati
MT
,
Ghamouss
F.
High-rate cyclability and stability of LiMn2O4 cathode materials for lithium-ion batteries from low-cost natural B-MnO2
.
Energy Storage Mater [Internet].
2020
;
26
:
423
32
. Available from:
5.
Zhang
L
,
Chen
C.
Electrode materials for lithium ion battery
.
Prog Chem [Internet].
2011
;
23
(
2-3
):
275
83
. Available from:
6.
Kalluri
S
,
Yoon
M
,
Jo
M
,
Park
S
,
Myeong
S
,
Kim
J
, et al 
Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High-Energy and High-Yoltage Li-Ion Cells
.
Adv Energy Mater.
2017
;
7
(
1
).
7.
Li
Q
,
Li
G
,
Fu
C
,
Luo
D
,
Fan
J
,
Li
L.
K+-doped Li1.2Mn0.54Co 0.13Ni0.1302: A novel cathode material with an enhanced cycling stability for lithium-ion batteries
.
ACS Appl Mater Interfaces.
2014
;
6
(
13
):
10330
41
.
8.
Lee
MJ
,
Lee
S
,
Oh
P
,
Kim
Y
,
Cho
J.
High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-Ion batteries
.
Nano Lett.
2014
;
14
(
2
):
993
9
.
9.
Ragavendran
KR
,
Xia
H
,
Yang
G
,
Yasudevan
D
,
Emmanuel
B
,
Sherwood
D
, et al 
On the theory of high rate capability of LiMn2O4 with some preferred orientations: Insights from the crystal shape algorithm
.
Phys Chem Chem Phys.
2014
;
16
(
6
):
2553
60
.
10.
Xia
H
,
Luo
Z
,
Xie
J.
Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium- ion batteries
.
Prog Nat Sci Mater Int [Internet].
2012
;
22
(
6
):
572
84
. Available from:
11.
Zhang
YZ
,
Zhao
J
,
Xia
J
,
Wang
L
,
Lai
WY
,
Pang
H
, et al 
Room temperature synthesis of cobalt-manganese- nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device
.
Sci Rep.
2014
;
5
(March).
12.
Su
J
,
Liang
H
,
Gong
XN
,
Lv
XY
,
Long
YF
,
Wen
YX
.
Fast preparation of porous MnO/C microspheres as anode materials for lithium-ion batteries
.
Nanomaterials.
2017
;
7
(
6
):
1
13
.
13.
Sun
X
,
Xu
Y
,
Ding
P
,
Jia
M
,
Ceder
G.
The composite rods of MnO and multi-walled carbon nanotubes as anode materials for lithium ion batteries
.
J Power Sources [Internet].
2013
;
244
:
690
4
. Available from:
14.
Zheng
D
,
Qiang
Y
,
Xu
S
,
Li
W
,
Yu
S
,
Zhang
S.
Hierarchical MnO2 nanosheets synthesized via electrodeposition-hydrothermal method for supercapacitor electrodes
.
Appl Phys A Mater Sci Process.
2017
;
123
(
2
):
0
.
15.
Guo
WH
,
Liu
TJ
,
Jiang
P
,
Zhang
ZJ
.
Free-standing porous manganese dioxide/graphene composite films for high performance supercapacitors
.
J Colloid Interface Sci [Internet].
2015
;
437
:
304
10
. Available from:
16.
Davar
F
,
Mohandes
F
,
Salavati-Niasari
M.
Synthesis and characterization manganese oxide nanobundles from decomposition of manganese oxalate
.
Inorganica Chim Acta.
2009
;
362
(
10
):
3663
8
.
17.
Udayabhanu,
Muralikrishna
S
,
Kishore
B
,
Nagabhushana
H
,
Suresh
D
,
Sharma
SC
, et al 
One pot green synthesis of MnCO3-rGO composite hybrid superstructure: Application to lithium ion battery and biosensor
.
New J Chem.
2017
;
41
(
21
):
12854
65
.
18.
Kang
L
,
Zhang
M
,
Liu
ZH
,
Ooi
K.
IR spectra of manganese oxides with either layered or tunnel structures
.
Spectrochim Acta - Part A Mol Biomol Spectrosc.
2007
;
67
(
3-4
):
864
9
.
19.
Mylarappa
M
,
Lakshmi
YY
,
Mahesh
KRY
,
Nagaswarupa
HP
,
Raghavendra
N.
A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications
.
IOP Conf Ser Mater Sci Eng.
2016
;
149
(
1
).
20.
Lu
X
,
Zhai
T
,
Zhang
X
,
Shen
Y
,
Yuan
L
,
Hu
B
, et al 
WO 3-x@Au@MnO 2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors
.
Adv Mater.
2012
;
24
(
7
):
938
44
.
21.
Zhao
CX
,
He
L
,
Qiao
SZ
,
Middelberg
APJ
.
Nanoparticle synthesis in microreactors
.
Chem Eng Sci [Internet].
2011
;
66
(
7
):
1463
79
. Available from:
22.
Teli
AM
,
Beknalkar
SA
,
Pawar
SA
,
Dubal
DP
.
Effect of Concentration on the Charge Storage Kinetics.
23.
Tian
L
,
Yuan
A.
Electrochemical performance of nanostructured spinel LiMn2O4 in different aqueous electrolytes
.
J Power Sources.
2009
;
192
(
2
):
693
7
.
24.
Ross
N
,
Iwuoha
EI
,
Ikpo
CO
,
Baker
P
,
Njomo
N
,
Mailu
SN
, et al 
Amplification of the discharge current density of lithium-ion batteries with spinel phase Li(PtAu)0.02Mn1.9804 nano-materials
.
Electrochim Acta.
2014
;
128
(February
2018
):
178
83
.
25.
Sadeghi
B
,
Sarraf-Mamoory
R
,
Shahverdi
HR
.
Surface modification of LiMn2O4 for lithium batteries by nanostructured LiFeP04 phosphate
.
J Nanomater.
2012
;2012(May
2015
).
26.
Wang
HQ
,
Lai
FY
,
Li
Y
,
Zhang
XH
,
Huang
YG
,
Hu
SJ
, et al 
Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries
.
Electrochim Acta.
2015
;
177
:
290
7
.
27.
Lv
X
,
Chen
S
,
Chen
C
,
Liu
L
,
Liu
F
,
Qiu
G.
One-step hydrothermal synthesis of LiMn2O4 cathode materials for rechargeable lithium batteries
.
Solid State Sci [Internet].
2014
;
31
:
16
23
. Available from:
This content is only available via PDF.
You do not currently have access to this content.