A gas-phase deposition is one of the types of additive technologies and is a process of applying a film or coating to the cooled surface, that is, a continuous layer of material that has, among other things, a nanocrystalline structure. Currently, the development of this and other additive technologies has made it possible to apply a variety of coatings with different properties. In most works devoted to the deposition numerical simulation, the features of gas heat exchange with the surface are not taken into account, while the temperature of the surface on which deposition occurs is one of the fundamental factors determining the film structure. In this paper, a numerical model of heat transfer during gas-phase deposition of a material on a cooled curved substrate is constructed, taking into account the specifics of heat exchange of the gas medium. A numerical analysis of the mathematical model is performed, and the influence of various heat transfer mechanisms on the temperature distribution in the substrate being built up is shown.

1.
Gusev
A.I.
 Nanomaterialy, nanostruktury, nanotekhnologii. [
Nanomaterials, nanostructures, nanotechnolodies
] M.:
Fizmatlit
.
2005
.
416
pp.
2.
L.
von Fieandt
,
Larsson
T.
,
Lindahl
E.
,
Bäcke
O.
,
Boman
M.
Chemical vapor deposition of TiN on transition metal substrates
//
Surface and Coatings Technology.
2018
. V.
334
. p.
373
383
.
3.
Wang
Y.
,
Liu
Q.
,
Zhang
L.
 et al.
Solid-state reactions of silicon carbide and chemical vapor deposited niobium
//
Journal of Coatings Technology and Research.
2009
. V.
6
. №
3
. p.
413
417
.
4.
Boisselier
G.
,
Maury
F.
,
Schuster
F.
SiC coatings grown by liquid injection chemical vapor deposition using single source metal-organic precursors
//
Surface and Coatings Technology.
2013
. V.
215
. p.
152
160
.
5.
Thomas
B.
,
Bartsch
W.
,
Stein
R.
 et al. 
Properties and Suitability of 4H-SiC Epitaxial Layers Grown at Different CVD Systems for High Voltage Applications
//
Materials Science Forum.
2004
. V.
457
. p.
181
184
.
6.
Kochemirovskij
V.A.
,
Skripkin
M.U.
,
Tver'yanovich
U.S.
Lazerno-inducirovannoe osazhdenie medi iz vodnyh i vodno-organicheskih rastvorov: sostoyanie i perspektivy issledovanij [Laser-induced copper deposition from aqueous and water-organic solutions: state and prospects of research]
//
Uspekhi himii [Advances in chemistry].
2015
. vol.
84
. №
10
. pp.
1059
1075
.
7.
Junjie
Guo
,
Yafeng
Yang
,
Qingshan
Zhu
,
Chuanlin
Fan
,
Pengpeng
Lv
,
Maoqiao
Xiang
.
Low-temperature chemical vapor deposition (CVD) of metallic titanium film from a novel precursor
//
Surface and Coatings Technology.
2018
. V.
353
. p.
18
24
.
8.
Komarov
F.F.
,
Pil'ko
V.V.
,
Klimovich
I.M.
Vliyanie uslovij naneseniya nanostrukturirovannyh pokrytij iz Ti– Zr–Si–N na ih sostav, strukturu i tribomekhanicheskie svojstva [Influence of conditions for applying nanostructured coatings from Ti–Zr–Si–N on their composition, structure and tribomechanical properties]
//
Inzh.-fizich. Zhurnal [Eng. - physical magazine].
2015
. Vol.
88
. №
2
. Pp.
344
.
9.
Vasil'ev
V.U.
,
Repinskij
S.M.
Osazhdenie dielektricheskih sloev iz gazovoj fazy [Deposition of dielectric layers from the gas phase]
//
Uspekhi himii [Advances in chemistry].
2005
. Vol.
74
. №
5
. Pp.
452
483
.
10.
Zhilyakov
L.A.
,
Kostanovskij
A.V.
Opticheskie svojstva tonkih plyonok nitrida alyuminiya [Optical properties of thin films of aluminum nitride]
//
Teplofizika vysokih temperatur [High temperature thermophysics].
1992
. Vol.
30
. №
2
. Pp.
290
293
.
11.
Masafumi
,
Taguchi
,
Satoshi
Hamaguchi
, MD
simulations of amorphous SiO2 thin film formation in reactive sputtering deposition processes //
Thin Solid Films.
2007
. V.
515
. №
12
. p.
4879
4882
.
12.
Grenadyorov
A. S.
,
Solovyev
A. A.
,
Oskomov
K. V.
,
Sypchenko
V.S.
Influence of deposition conditions on mechanical properties of a-C:H:SiOx films prepared by plasma-assisted chemical vapor deposition method //
Surface and Coatings Technology.
2018
. V.
349
. p.
547
555
.
13.
Jamali
H.
,
Mozafarinia
R.
,
Eshaghi
A.
Effect of deposition parameters on the microstructure and deposition rate of germanium-carbon coatings prepared by plasma enhanced chemical vapor deposition //
Surface and Coatings Technology.
2016
. V.
302
. p.
107
116
.
14.
Kuvyrkin
G.N.
,
Zhuravskii
A.V.
, and
Savel'eva
I.Yu
.
Mathematical modeling of chemical vapor deposition of material on a curvilinear surface //
Journal of Engineering Physics and Thermophysics.
2016
. V.
89
. No.
6
. p.
1374
1379
.
15.
Kuvyrkin
G.N.
,
Savelyeva
I.Yu.
,
Zhuravskii
A.V.
Numerical Simulation of Vapor-Phase Epitaxy with Allowance for Diffusion Processes
//
Mathematical Models and Computer Simulations
,
2018
. Vol.
10
, Issue
3
. Pp.
299
307
16.
Kuvyrkin
G.N.
 Termomekhanika deformiruemogo tvyordogo tela pri vysokointensivnom nagruzhenii. [
Thermomechanics of a deformable solid under high-intensity loading
] M.: Izd-vo MGTU. [
BMSTU Publishing house]
1993
.
145
p.
17.
Dul'nev
G. N.
 Teoriya teplo- i massoobmena. [
Theory of heat and mass transfer
]
SPb: NIU ITMO
.
2012
.
195
p.
18.
Frank-Kameneckij
D.A.
 Diffuziya i teploperedacha v himicheskoj kinetike. [
Diffusion and heat transfer in chemical kinetics
] M.:
Nauka
.
1987
.
502
p.
19.
Zhe
Lu
,
Guanlin
Lyu
,
Abhilash
Gulhane
and others.
Experimental and Modeling Studies of Bond Coat Species Effect on Microstructure Evolution in EB-PVD Thermal Barrier Coatings in Cyclic Thermal Environments. //
Coatings.
2019
. V.
9
. p.
626
640
.
20.
Reference book on non-ferrous metals [URL]: http://libmetal.ru/ (accessed date: 09.07.2020).
This content is only available via PDF.
You do not currently have access to this content.