The paper presents a study of thread milling cutter chip flutes inclination angle based on the condition of internal thread milling uniformity. “Uniform Thread Milling” software was developed using an analytical cut layer model and the thread milling uniformity criterion. Based on input parameters of threads, tools and feed rates during machining, a plan was drawn up and a computational experiment was conducted to determine their influence on the chip grooves tilt angle ω. The computational experiment results showed that the uniform machining process required the chip flutes inclination angle ω ≠ 0° (ω = 17°… 37°). The study obtained partial dependences and developed a general multiplicative model of the chip flutes inclination angle ω. The study of the multiplicative model showed that ω angle was mostly influenced by the number of teeth z, followed in descending order by the length of the thread-creating part of the milling cutter lr, thread diameter D, feed Sz, pitch of thread P, and thread-forming mill part diameter dr. In this case, the angle ω monotonically goes up with increasing diameter D and pitch of thread P, and monotonically decreasing when other parameters go up. The angle ω changes insignificantly with increases in mill diameter dr.

1.
S.V.
Reznik
,
P.V.
Prosuntsov
, and
K.V.
Mikhailovskii
,
Development of elements of reusable heat shields from a carbon–ceramic composite material,
Journal of Engineering Physics and Thermophysics
, Vol.
92
, No.
1
, January,
2019
, pp.
89
94
.
2.
G.P.
Zarubin
,
V.N.
Zimin
, and
G.N.
Kuvyrkin
,
Thermal state of the shell for supersonic part of the ramjet
,
Russian Aeronautics (Iz.VUZ)
,
2017
, Vol.
60
, No.
2
, pp.
236
242
.
3.
Sergey
Reznik
,
Thermal regimes of space composite structures. Part II
,
MATEC Web of Conferences
194
,
01049
,
2018
, pp.
1
6
.
4.
V.A.
Tarasov
,
M.A.
Komkov
,
V.A.
Romanenkov
,
A.I.
Alyamovsky
,
N.I.
Kopyl
and
R.V.
Boyarskaya
,
Theory and practice for the manufacture of a composite thermal heat shield for a space ship
,
IOP Conf. Series: Materials Science and Engineering
153
,
2016
,
012015
, pp.
1
12
.
5.
Tatiana
Guzeva
,
Yuliya
Zavitaeva
and
Evgeniya
Chutskova
,
Analysis of physical mechanical and structural characteristics of microwave cured organic polymer parts
,
IOP Conf. Series: Materials Science and Engineering
74
,
2015
,
012007
, pp.
1
5
.
6.
Pavlyuchenkov
I. A.
,
Malkov
O. V.
,
Vinogradov
D. V.
and
Karelskiy
A. S.
Integrated computer training of specialists in the field of tool systems modeling
//
AIP Conference Proceedings
2195
,
020032
(
2019
); . Published Online: 17 December
2019
.
7.
Malkova
L.D.
Surface modeling as a tool for visualization and analysis of machining problems
//
AIP Conference Proceedings
2195
,
020056
(
2019
); Published Online: 17 December
2019
.
8.
Malkov
O.V.
,
Karelsky
A.S.
Modelling the Cut Layer When Thread Milling -
BMSTU Journal of Mechanical Engineering. -
2017
.- 29;
9.
A.
Bustillo
,
L.N.L.
de Lacalle
,
A.
Fernandez-Valdivielso
,
P.
Santos
.
Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components
,
Journal of Computational Design and Engineering
,
3
,
2016
, pp.
337
348
;
10.
G.
Fromentin
,
G.
Poulachon
,
Geometrical analysis of thread milling-Part 1: Evaluation of tool angles
,
The International Journal of Advanced Manufacturing Technology
,
2010
,
49
(
1–4
), pp.
73
80
.
11.
A.C.
Araujo
,
J.L.
Silveira
,
A model for micro thread milling operation (MTMO)
, CSME FORUM,
2010
, pp.
1
8
.
12.
A.C.
Araujo
,
J.L.
Silveira
,
M.B.
Jun
,
S.G.
Kapoor
, and
R.
DeVor
,
A model for thread milling cutting forces
,
International Journal of Machine Tools and Manufacture
, vol.
46
(
15
),
2006
, pp.
2057
2065
.
13.
A.C.
Araujo
,
G.
Fromentin
,
G.
Poulachon
,
Analytical and experimental investigations on thread milling forces in titanium alloy
,
International Journal of Machine Tools & Manufacture
,
67
,
2013
, pp.
28
34
.
14.
M.B.G.
Jun
,
A.C.
Araujo
,
Modeling of the thread milling operation in a combined thread/drilling operation: Thrilling
,
Journal of Manufacturing Science and Engineering
, vol.
132
,
2010
, pp.
1
6
.
15.
S.W.
Lee
,
A.
Kasten
,
A.
Nestler
,
Analytic mechanistic cutting force model for thread milling operations
,
Procedia CIRP, 2013
, vol.
8
: 14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO), pp.
546
551
.
16.
G.
Fromentin
,
B.
Dobbeler
,
D.
Lung
,
Computerized Simulation of Interference in Thread Milling of Non-Symmetric Thread Profiles
,
15th CIRP Conference on Modelling of Machining Operations
,
31
,
2015
, pp.
496
501
.
17.
G.
Fromentin
,
G.
Poulachon
,
Geometrical analysis of thread milling – Part 2: Calculation of uncut chip thickness
,
The International Journal of Advanced Manufacturing Technology
,
2010
, Vol.
49
, (
1-4
), pp.
81
87
.
18.
L.
Urena
,
E.
Ozturk
,
N.
Sims
,
Stability of variable helix milling: model validation using scaled experiments
,
8th CIRP Conference on High Performance Cutting, Piocedia CIRP
,
77
,
2018
, pp.
449
452
.
19.
A.C.
Araujo
,
J.L.
Silveira
,
M.B.
Jun
,
S.G.
Kapoor
and
R.
DeVor
,
A model for thread milling cutting forces
,
International Journal of Machine Tools and Manufacture
, vol.
46
(
15
),
2006
, pp.
2057
2065
.
20.
A.C.
Araujo
,
G.
Fromentin
,
G.
Poulachon
,
Analytical and experimental investigations on thread milling forces in titanium alloy
,
International Journal of Machine Tools & Manufacture
,
67
,
2013
, pp.
28
34
.
21.
Zubkov
N.N.
 Novel Method of Single-Pass Threading by Cutter. In:Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019).
ICIE 2019 // Lecture Notes in Mechanical Engineering
. –
Springer
. –
Cham
. –
2020
. p.
973
982
. DOI:
22.
M.
Piska
,
P.
Sliwkova
.
Surface Parameters, Tribological Tests and Cutting Performance of Coated HSS Taps
,
Procedia Engineering
,
100
,
2015
, pp.
125
134
, doi: 10.1016/j.proeng.2015.01.350;
23.
A.O.
de Carvalho
,
L.C.
Brandao
,
T.H.
Panzera
,
C.H.
Lauro
.
Analysis of for threads using fleteless taps in cast magnesium alloy (AM60
),
Journal of materials Processing Technology
,
212
,
2012
, pp.
1753
1760
, DOI: ;
24.
L.V.
Fedorova
,
S.K.
Fedorov
,
Y.S.
Ivanova
and
M.V.
Voronina
,
Increase of wear resistance of the drill pipe thread connection by electromechanical surface hardening
,
International Journal of Applied Engineering Research
, Vol.
12, Num
.
18
,
2017
, pp.
7485
7489
25.
V.A.
Morgunov
,
S.M.
Nebogov
and
I.L.
Fedotov
,
Elevation of the wear resistance of threads of tubing strings under the action of ultrasound
,
Metallurgist
, Vol.
61, Nos
.
11–12
, March,
2018
, pp.
1108
1114
.
26.
S.
Evsyukov
,
S.
Nebogov
, and
I.
Fedotov
,
Pipe thread wear-resistant ultrasonic hardening unit
,
Vibroengineering Procedia
,
8
,
142
146
,
2016
, pp.
142
146
.
27.
M.
Wan
,
Y.
Altintas
,
Mechanics and dynamics of thread milling process
,
International Journal of Machine Tools & Manufacture
,
2014
, (
87
), pp.
16
26
.
28.
A.C.
Araujo
,
J.L.
Silveira
, and
S.G.
Kapoor
, “
Force prediction in thread milling
,”
Journal of the Brazilian Society of Mechanical Sciences and Engineering
, vol.
1 (XXVI
),
2004
, pp. pp.
82
88
.
29.
V.S.
Sharma
,
G.
Fromentin
,
G.
Poulachon
,
R.
Brendlen
,
Investigation of tool geometry effect and penetration strategies on cutting forces during thread milling
,
The International Journal of Advanced Manufacturing Technology
,
2014
,
74
, pp.
963
971
.
30.
V.A.
Kosarev
,
V.A.
Grechishnikov
, and
D.V.
Kosarev
,
Milling internal thread with planetary tool motion
,
Russian Engineering Research
,
2009
, Vol.
29
, No.
11
, pp.
1177
1179
.
31.
Malkov
O.V.
,
Karelskiy
A.S.
Rising the work uniformity of thread milling cutters in machining parts of rocket and space technology
//
AIP Conference Proceedings
2171
,
200005
(
2019
); . Published Online: 15 November
2019
.
32.
S.W.
Lee
,
A.
Nestler
,
Simulation-aided design of thread milling cutter
,
Procedia CIRP
1
,
2012: 5th CIRP Conference on High Performance Cutting
, pp.
120
125
.
33.
Tadahiro
Wada
and
Koji
Iwamoto
,
Tool wear of titanium/tungsten/silicon/aluminum-based-coated solid carbide thread milling cutters in thread tapping of chromium-molybdenum steel
,
IACSIT International Journal of Engineering and Technology
, Vol.
7
, No.
6
,
2015
, pp.
445
448
.
34.
Malkov
O.V.
,
Golovko
I.M.
,
Karelsky
A.S.
Theoretical Calculation of Parameters of the Cut Layer Cross Section when Thread Milling
. –
BMSTU Journal of Mechanical Engineering.
2018
-
210
.
35.
Malkov
O.V.
,
Malkova
L.D.
Improving thread accuracy in machining components for rocket and space technologies
//
AIP Conference Proceedings
2171
,
200006
(
2019
); . Published Online: 15 November
2019
.
36.
S.
Ema
and
R.
Daviest
,
Cutting performance of end mills with different helix angles
,
International Journal of Machine Tools & Manufacture
, Vol.
29
, No.
2
,
1989
, pp.
217
227
.
37.
A.
Hosokawa
,
N.
Hirose
,
T.
Ueda
,
T.
Furumoto
.
High-quality machining of CFRP with high helix end mill
.
CIRP Annals - Manufacturing Technology
(
2014
), .
38.
E.
Ozturk
,
O.
Ozkirimli
,
T.
Gibbons
,
M.
Saibi
,
S.
Turner
,
Prediction of effect of helix angle on cutting force coefficients for design of new tools
,
CIRP Annals - Manufacturing Technology
,
65
,
2016
, pp.
125
128
.
This content is only available via PDF.
You do not currently have access to this content.