Contact photolithography for photoresist layers thicker than 1 micron is widely used in creating microreliefs in production technologies of microelectromechanical systems, micropackaging, optical printed circuit boards and other microdevices. Microrelief walls slope in photoresist inflicts significant influence on the microdevice output parameters. Based on analysis of the contact photolithography features, it is proposed a mathematical model based on the Fresnel diffraction of image generation in the thick photoresist layers. The model and statistical processing of results obtained on its basis adequately describe relationship between the photolithography output parameters, i.e. the microrelief sidewalls slope, and the photoresist absorption coefficient and thickness.

1.
Voelkel
R.
 et al 
Advanced mask aligner lithography (AMALITH
) //
Optical Microlithography XXV. – International Society for Optics and Photonics
,
2012
. – T.
8326
. – C.
83261Y
.
2.
Tummala
R.
,
Swaminathan
M.
Introduction to System on Package (SOP)
. –
McGraw-Hill Professional Publishing
,
2007
.
3.
Brubaker
C.
,
Islam
R.
,
Luesebrink
H.
Ultra-thick lithography for advanced packaging and MEMS
//
Advances in Resist Technology and Processing XIX. – International Society for Optics and Photonics
,
2002
. – T.
4690
. – C.
270
276
.
4.
Bakri-Kassem
M.
,
Mansour
R. R.
High power latching RF MEMS switches
//
IEEE transactions on microwave theory and techniques.
2014
. – T.
63
. – №
1
. – C.
222
232
.
5.
Ebersberger
B.
,
Lee
C.
Cu pillar bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects
//
2008 58th Electronic Components and Technology Conference. – IEEE
,
2008
. – C.
59
66
.
6.
Prajzler
V.
 et al 
Properties of multimode optical epoxy polymer waveguides deposited on silicon and TOPAS substrate
//
Radioengineering.
2017
. – T.
26
. – №
1
.
7.
Tang
J.
,
Sun
X.
,
Luo
L.
A wafer-level multi-chip module process with thick photosensitive benzocyclobutene as the dielectric for microwave application
//
Journal of Micromechanics and Microengineering. –
2011
. – T.
21
. – №
6
. – C.
065035
.
8.
Cochet
K. R. P.
 et al 
Lithography challenges for 2.5 D interposer manufacturing
//
2014 IEEE 64th Electronic Components and Technology Conference (ECTC
). –
IEEE
,
2014
. – C.
523
527
.
9.
Madou
,
M. J.
(
2011
).
Fundamentals of Microfabrication and Nanotechnology
,
Three-Volume Set. CRC Press
.
10.
Thompson
,
L. F.
, &
Bowden
,
M. J.
(
1983
).
The lithographic process: the physics
.
Introduction to Microlithography, American Chemical Society, Advanced in Chemistry Series
,
219
.
11.
Puthankovilakam
K.
Limitations of Proximity Lithography Printing
. –
EPFL
,
2017
. – 2. THESIS.
12.
Wang
,
F.
,
Liu
,
F.
,
Kong
,
L.
,
Sundaram
,
V.
,
Tummala
,
R. R.
, &
Adibi
,
A.
(
2010
).
Proximity Lithography in Sub-10 Micron Circuitry for Packaging Substrate
.
IEEE Transactions on Advanced Packaging
,
33
(
4
),
876
882
.
13.
Weichelt
T.
 et al 
Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks
//
Optics express.
-
2014
. - T.
22
. - No.
13
. - S.
16310
16321
.
14.
Voelkel
R.
 et al 
Advanced mask aligner lithography (AMALITH
) //
Optical Microlithography XXV. - International Society for Optics and Photonics
,
2012
.-- T.
8326
.-- S.
83261Y
.
15.
Popescu
C. M.
Advanced resist materials for next generation lithography
:
dis. - University of Birmingham
,
2019
.
16.
Ito
H.
Chemical amplification resists: History and development within IBM
//
IBM Journal of research and development.
-
1997
. - T.
41
. - No.
1.2
. - S.
119
130
.
17.
Okoroanyanwu
U.
Chemistry and Lithography. -
John Wiley & Sons
,
2011
.
18.
Willson
C. G.
 et al 
The design of resist materials for 157nm lithography
//
Journal of Photopolymer Science and Technology.
-
2002
. - T.
15
. - No.
4
. - S.
4583
590
.
19.
Mack
C.
Fundamental principles of optical lithography: the science of microfabrication. -
John Wiley & Sons
,
2008
.
20.
Liu
S.
 et al 
Enhanced dill exposure model for thick photoresist lithography
//
Microelectronic engineering. -
2005
. - T.
78
. - S.
490
495
.
21.
Zhou
Z. F.
,
Huang
Q. A.
Comprehensive simulations for ultraviolet lithography process of thick SU-8 Photoresist
//
Micromachines. -
2018
. - T.
9
. - No.
7
. - p.
341
.
22.
Yang
R.
,
Wang
W.
A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures
//
Sensors and Actuators B: Chemical.
-
2005
. - T.
110
. - No.
2
. - S.
279
288
.
23.
Kang
W. J.
 et al 
Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography
//
Journal of Micromechanics and Microengineering.
-
2006
. - T.
16
. - No.
4
. - p.
821
.
24.
Chuang
Y. J.
,
Tseng
F. G.
,
Lin
W. K.
Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination
//
Microsystem Technologies.
-
2002
. - T.
8
. - No.
4-5
. - S.
308
313
.
25.
Tian
X.
 et al 
Simulation of deep UV lithography with SU-8 resist by using 365 nm light source
//
Microsystem technologies.
-
2005
. - T.
11
. - No.
4-5
. - S.
265
270
.
26.
Tang
X.
 et al 
Simulation and analysis for microstructure profile of optical lithography based on SU-8 thick resist
//
Microelectronic engineering.
-
2007
. - T.
84
. - No.
5-8
. - S.
1100
1103
.
27.
Zhou
Z. F.
,
Huang
Q. A.
Comprehensive simulations for ultraviolet lithography process of thick SU-8 Photoresist
//
Micromachines.
-
2018
. - T.
9
. - No.
7
. - p.
341
.
28.
Yoshihisa
S.
 et al 
Profile simulation of SU-8 thick film resist
//
Journal of Photopolymer Science and Technology.
-
2005
. - T.
18
. - No.
1
. - S.
125
132
.
29.
Goodman
J. W.
Introduction to Fourier optics
. -
Roberts and Company Publishers
,
2005
.
30.
Bychkov
S.P.
,
Mikhajlov
V.P.
,
Panfilov
Yu.V.
,
Tsvetkov
Yu.B.
,
Pod red. Yu.B.
Tsvetkova
,
Fizicheskie osnovy` mikro-i nanotekhnologij
:
Ucheb
.
Posobie, M.: Izd-vo MGTU im. N.E. Baumana
,
2009
.--
176
p
31.
Mack
C. A.
Using the normalized image log-slope
//
Microlithography World.
-
2001
.-- T.
23
.
32.
Mack
C. A.
Using the normalized image log-slope, Part 2
//
Microlithography World. -
2001
.
This content is only available via PDF.
You do not currently have access to this content.