The paper shows the advantages of using the built-in tools of the MATLAB Simulink to set the aerodynamic characteristics (ADC) of an aircraft in the numerical simulation of its controlled movement. Modeling of complex technical systems, designed to provide controlled movement of objects in the atmospheres of planets, requires a special representation of the aircraft aerodynamic characteristics, which may differ significantly from the representations adopted for simplified or non-specialized calculations. As a rule, the aerodynamic characteristics that are an integral part of the description of a technical object have a discrete table representation. An important aspect of using table data is interpolation when determining the desired characteristics if they do not match the node values. The simplest method is two-dimensional linear interpolation, which allows you to accurately determine the desired values. The MATLAB Simulink functionality allows you to make predictions about nodal values and enter nonlinear interpolation. In the course of the research, it is proved that it is advisable to use various interpolation methods depending on the table data features, while MATLAB Simulink tools allow you to automatically organize the most optimal approximation method. MATLAB Simulink tools also allow you to use the forecast model and thus improve the calculations quality.

1.
Wang
X.A.
,
Konigorski
U.
On Linear Solutions of the Output Feedback Pole Assignment Problem
.
IEEE Transactions on Automatic Control
,
2013
, vol.
58
, no.
9
, pp.
2354
2359
.
2.
Yoon
Y.E.
,
Johnson
E.N.
Determination of Limit Cycle Oscillation Frequency in Linear Systems with Relay Feedback
.
Proceedings of the AIAA Guidance, Navigation, and Control Conference
, January 8—12,
2018
.
United States, Florida, Kissimmee
,
AIAA Publ
.,
2018
, pp.
178
196
.
3.
Gonzalez
R.
,
Catania
C.A.
,
Dabove
P.
,
Taffernaberry
J.C.
,
Piras
M.
Model validation of an open-source framework for post-processing INS/GNSS systems
.
Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management
.
2017
, vol.
1
, pp.
201
208
.
4.
Missile flight simulation part one surface-to-air missiles. 2 MIL-HDBK-1211(MI
),
Department of Defense USA
,
1995
,
254
c.
5.
Menter
F.R.
Zonal two-equation k-ffi turbulence models for aerodynamic flows II 24th AIAA Fluid Dynamics Conference
(6-9 July 1993;
Orlando, FL; United States
).
AIAA Paper 1993-2096
. DOI:
6.
Seider
D.
,
Fischer
P.M.
,
Litz
M
,
Schreiber
A.
,
Gerndt
A.
Open source software framework for applications in aeronautics and space
//
IEEE Aerospace Conference
(
Big Sky, MT, USA
. 3-10 March
2012
),
11
p. DOI:
7.
Scanlon
T.J.
,
White
C.
,
Borg
M.
,
Palharini
R.C.
,
Farbar
E.
,
Boyd
I.
,
Reese
J.
,
Brown
R.
Open source DSMC chemistry modelling for hypersonic flows
.
AIAA Journal
,
2014
.
8.
Dubois
J.
Radiation calculation in non-equilibrium shock layer
. In:
Proceedings of the International Workshop on Radiation of High Temperature Gases in Atmospheric Entry
,
2004
, Part II (ESA SP-583), pp.
41
47
.
9.
Wilcox
D.C.
Turbulence Modeling for CFD. La Canada
,
California
,
DCW Industries Inc
.,
1998
,
477
p.
10.
Kuzenov
V.V.
,
Ryzhkov
S.V.
Approximate Method for Calculating Convective Heat Flux on the Surface of Bodies of Simple Geometric Shapes
.
Journal of Physics: Conference Series
,
2017
, vol.
815
, p.
012024
.
11.
Ryzhkov
S.V.
,
Kuzenov
V.V.
New realization method for calculating convective heat transfer near the hypersonic aircraft surface
.
ZAMP
,
2019
, vol.
70
, p.
46
.
12.
Ryzhkov
S.V.
,
Kuzenov
V.V.
Analysis of the ideal gas flow over body of basic geometrical shape
.
International Journal of Heat and Mass Transfer
,
2019
, vol.
132
, pp.
587
592
.
13.
Fletcher
C.A.J.
Computational Techniques for Fluid Dynamics
. In
2
vols.
Heidelberg
,
Springer-Verlag, 1998
.
14.
Gilat
,
Amos
(
2004
).
MATLAB: An Introduction with Applications
2nd Edition.
John Wiley & Sons
. ISBN 978-0-471-69420-5.
15.
Quarteroni, Alfio; Saleri, Fausto
(
2006
).
Scientific Computing with MATLAB and Octave.
Springer
. ISBN 978-3-540-32612-0.
16.
Ferreira
,
A.J.M.
(
2009
).
MATLAB Codes for Finite Element Analysis
.
Springer
. ISBN 978-1-4020-9199-5.
17.
Nikanorova
M.D.
,
Vedenichev
I.V.
The use of MATLAB.SIMULINK in ballistic calculations
.
Polytechnic youth magazine.
2017
. No
10
. DOI:
18.
Lynch
,
Stephen
(
2004
).
Dynamical Systems with Applications using MATLAB. Birkhäuser.
ISBN 978-0-8176-4321-8.
19.
Teryokhin
V.V.
,
Modeling in the MATLAB system
,
Publishing House of the Kuzbass Technical University
,
Novokuznetsk
,
2005
,
238
pp.
20.
Chernykh I.V.
Simulink
:
An Environment for Creating Engineering Applications
,
Dialog-MEPhI Publishing House
,
Moscow
,
2004
,
247
pp.
This content is only available via PDF.
You do not currently have access to this content.