We comparatively study the electronic and thermoelectric properties of the monolayer, bilayer, and bulk CrI3 by density functional theory (DFT). We show that, according to the DFT calculation, those materials are magnetic semiconductors with ferromagnetic (FM) in monolayer, antiferromagnetic (AFM) in the bilayer, back to FM in the bulk structure. The thermoelectric properties of those materials are evaluated by using the Boltzmann transport equation (BTE) with a constant relaxation time approximation (RTA). At room temperature, we obtain bulk CrI3 has more significant electrical conductivity than monolayer and bilayer CrI3, while the Seebeck coefficient is similar that implied the bulk CrI3 has a better thermoelectric performance. In those systems, the optimum power factor is obtained by shifting the chemical potential of CrI3 by 1 eV with p-type doping.

1.
T.
Li
,
S.
Jiang
,
N.
Sivadas
,
Z.
Wang
,
Y.
Xu
,
D.
Weber
,
J. E.
Goldberger
,
K.
Watanabe
,
T.
Taniguchi
,
C. J.
Fennie
,
K. F.
Mak
, and
J.
Shan
,
Nature Materials
18
,
1303
1308
(
2019
).
2.
V. K.
Gudelli
and
G. Y.
Guo
,
New J. Phys.
21
,
053012
, pp.
1
16
(
2019
).
3.
P.
Jiang
,
L.
Li
,
Z.
Liao
,
Y. X.
Zhao
, and
Z.
Zhong
,
Nano Lett.
18
,
3844
3849
(
2018
).
4.
Y.
Liu
,
L.
Wu
,
X.
Tong
,
J.
Li
,
J.
Tao
,
Y.
Zhu
, and
C.
Petrovic
,
Scientific Reports
9
,
13599
, pp.
1
8
(
2019
).
5.
Z.
Wu
,
J.
Yu
, and
S.
Yuan
,
Phys. Chem. Chem. Phys.
21
,
7750
7755
(
2019
).
6.
B.
Huang
,
G.
Clack
,
D. R.
Klein
,
D.
MacNeill
,
E.
Navarro-Moratalla
,
K. L.
Seyler
,
N.
Wilson
,
M. A.
McGuire
,
D. H.
Cobden
,
C.
Xiao
,
W.
Yao
,
P.
Jarillo-Herrero
, and
X.
Xu
,
Nature Nanotechnology
13
,
544
548
(
2018
).
7.
L.
Chen
,
J. H.
Chung
,
B.
Gao
,
T.
Chen
,
M. B.
Stone
,
A. I.
Kolesnikov
,
Q.
Huang
, and
P.
Dai
,
Phys. Rev. X
8
,
041028
, pp.
1
7
(
2018
).
8.
B.
Gao
,
T.
Zhou
,
A. J.
Hong
,
F.
Liang
,
G.
Song
,
Q. Q.
Xu
,
J.
Zhang
,
G. N.
Li
,
Y.
Wang
, and
C.
Dang
,
Applied Physics Express
13
, 045001, pp.
1
13
(
2020
).
9.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
Journal of Physics: Condensed Matter
21
, 395502, pp.
1
19
(
2009
).
10.
H.
Sheng
,
Y.
Zhu
,
D.
Bai
,
X.
Wu
, and
J.
Wang
,
Nanotechnology
31
, 315713, pp.
1
17
(
2020
).
11.
M. A.
McGuire
,
H.
Dixit
,
V. R.
Cooper
, and
B. C.
Sales
,
Chem. Mater.
27
,
612
620
(
2015
).
12.
E. S.
Morell
,
A.
Leon
,
R. H.
Miwa
, and
P.
Vargas
,
2D Materials
6
, 025020, pp.
1
11
(
2019
).
13.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
5079
(
1981
).
14.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Physical Review Letters
77
,
3865
3868
(
1996
).
15.
G. K.
Madsen
and
D. J.
Singh
,
Computer Physics Communications
175
,
67
71
(
2006
).
16.
H. J.
Goldsmid
,
Introduction to Thermoelectricity
(
Springer
,
New York
,
2010
), pp.
23
28
.
This content is only available via PDF.
You do not currently have access to this content.