The Effect of high energy milling on Nd2Fe14B ribbons of melt-spun products. Preliminary research on the effect of milling time with high energy milling (HEM) on the Nd2Fe14B ribbons of melt-spun products as a base material for the manufacture of hot-press permanent magnets using the SPS (Spark Plasma Sintering) technique have been carried out. The milling period appears to affect magnetic parameters such as the saturation field, Ms and the coercive field, Hc. The Ms value for Nd2Fe14B-ribbon material is 101 emu/g, while Ms values for Nd2Fe14B-after milling were 122, 106 and 107 emu/gram for 1.5, 3.0, and 5.0 hours milling time, respectively. The coercive field value of Hc on the Nd2Fe14B-ribbon was 0.045 Tesla, while the Hc on Nd2Fe14B-after milling 1.5, 3.0, and 5.0 hours were 0.122, 0.173, and 0.132 Tesla, respectively. The change and improvement in Ms and Hc values have a strong correlation with the fraction of the phases formed during the milling process. As a result of the milling process, the melt-spun product of Nd2Fe14B, which initially consists of 96% Nd2Fe14B and 4% Nd2O3 phase, changes to predominantly Fe phase, the rest is Nd2Fe14B, and Nd2O3 in very small amounts. The high energy milling of the melt-spun product of Nd2Fe14B in toluene media has caused the Nd2Fe14B phase decrease by more than 90%. To keep Fe from being separated from the Nd2Fe14B compound, a surfactant is most likely needed during the milling process.

1.
J. J.
Croat
,
J. F.
Herbst
,
R. W.
Lee
, and
F. E.
Pinkerton
,
Pr-Fe and Nd-Fe-based materials: A new class of high-performance permanent magnets
,
J. Appl. Phys.
, vol.
55
, no.
6
, pp.
2078
2082
,
1984
.
2.
M.
Sagawa
,
S.
Fujimura
,
H.
Yamamoto
, and
Y.
Matsuura
,
Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds
,
IEEE Transactions on Magnetics
, vol.
20
, no.
5
, pp.
1584
1589
,
1984
.
3.
O.
Gutfleisch
,
M. A.
Willard
,
E.
Brück
,
C. H.
Chen
,
S. G.
Sankar
, and
J. P.
Liu
,
Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient
,
Adv. Mater.
, vol.
23
, pp.
821
842
,
2011
.
4.
J. F.
Herbst
,
R2Fe14B materials: Intrinsic properties and technological aspects
,
Rev. Modern Phys
, vol.
63
, no.
4
), pp.
819
898
,
1991
.
5.
L.
Liu
,
J.P.
Liu
,
J.
Zhang
,
W.
Xia
,
J.
Du
,
A.
Yan
,
W.
Li
and
Z.
Guo
,
The microstructure and magnetic properties of anisotropic polycrystalline Nd2Fe14B nanoflakes prepared by surfactant-assisted cryomilling
,
Materials Research Express
, vol.
1
, no.
1
, pp.
016106
,
2014
.
6.
Xiaoxin
An
,
Kunpeng
Jin
,
Fang
Wang
,
Qiuli
Fang
,
Juan
Du
,
Weixing
Xia
,
Aru
Yan
,
J Ping
Liu
, and
Jian
Zhang
,
Performance enhancement of NdFeB nanoflakes prepared by surfactant-assisted ball milling at low temperature by using different surfactants
,
Mater. Res. Express
, vol.
4
, no.
2
, pp.
025033
,
2017
.
7.
Ramlan
,
D. Setiabudidaya
,
Suprapedi
,
A. A. Bama
,
Muljadi
,
Synthesis and Characterization of Nd2Fe14B Powder by using Mechanical Milling of Flakes NdFeB
,
J. Phys.: Conference Series
, vol.
1428
, no.
1
, pp.
012014
,
2020
.
8.
J. M. D.
Coey
,
Permanent magnets: Plugging the gap
,
Scr. Mater.
, vol.
67
, no.
6
, pp.
524
529
,
2012
.
9.
K.
Hono
,
H.
Sepehri-Amin
,
Strategy for high-coercivity Nd-Fe-B magnets
,
Scr. Mater.
, vol.
67
, pp.
530
535
,
2012
.
10.
Z.
Li
,
W.
Liu
,
S.
Zha
,
Y.
Li
,
Y.
Wang
,
D.
Zhang
,
M.
Yue
,
J.
Zhang
,
X.
Huang
,
Effects of CE substitution on the microstructures and intrinsic magnetic properties of Nd–Fe–B alloy
,
J. Magn. Magn. Mater.
, vol.
393
, pp.
551
554
,
2015
.
11.
X.
Wang
,
M.
Zhu
,
W.
Li
,
L.
Zheng
,
Z.
Guo
,
X.
Du
,
A.
Du
,
Effects of the ingot phase transition on microstructure and magnetic properties of CeNdFeB melt-spun ribbons
,
Physica B
, vol.
476
, pp.
150
153
2015
.
12.
Z. B.
Li
,
B. G.
Shen
,
M.
Zhang
,
F. X.
Hu
,
J. R.
Sun
,
Substitution of Ce for Nd in preparing R2Fe14B nanocrystalline magnets
,
J. Alloys Compd.
, vol.
628
, pp.
325
328
,
2015
.
13.
T.T.
Sasaki
,
T.
Ohkubo
,
Y.
Takada
,
T.
Sato
,
A.
Kato
,
Y.
Kaneko
,
K.
Hono
,
Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd–Fe–B sintered magnet
,
Scr. Mater
, vol.
113
, pp.
218
221
,
2016
.
14.
L.
Liang
,
T.
Ma
,
C.
Wu
,
P.
Zhang
,
X.
Liu
,
M.
Yan
,
Coercivity enhancement of Dy-free Nd–Fe–B sintered magnets by intergranular adding Ho63. 4Fe36. 6 alloy
,
J. Magn. Magn. Mater.
, vol.
397
, pp.
139
144
2016
.
15.
H.
Sepehri-Amin
,
T.
Ohkubo
,
K.
Hono
,
The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd–Fe–B sintered magnets
,
Acta Mater.
, vol.
61
, no.
6
, pp.
1982
1990
,
2013
.
16.
H.
Sepehri-Amin
,
T.
Ohkubo
,
S.
Nagashima
,
M.
Yano
,
T.
Shoji
,
A.
Kato
,
T.
Schrefl
,
K.
Hono
,
High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process
,
Acta Mater.
, vol
61
, no.
17
, pp.
6622
6634
,
2013
.
17.
A. K.
Pathak
,
M.
Khan
,
K. A.
Gschneidner
Jr.,
R.W.
McCallum
,
L.
Zhou
,
K.
Sun
,
K. W.
Dennis
,
C.
Zhou
,
F. E.
Pinkerton
,
M. J.
Kramer
, and
V. K.
Pecharsky
,
Cerium: an unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets
,
Adv. Mater.
, vol.
27
, no.
16
, pp.
2663
2667
,
2015
.
18.
T.
Degen
, and
E.
Bron
,
M.
Sadki
,
M.
Schreyer
,
DDM, the new RIR?
,
PANalytical B.V
.,
Almelo, Netherlands
. 14 August 2018. https://www.researchgate.net/publication/327012207, cited September 18,
2020
.
19.
S.
Rühl
,
Inorganic Crystal Structure Database (ICSD)
,
FIZ Karlsruhe.
https://icsd.products.fiz-karlsruhe.de/sites/default/files/ICSD/documents/brochures/A-Focus-on-Crystallography.pdf. Cited January
2021
.
20.
V. V.
Nguyen
,
C.
Rong
,
Y.
Ding
, and
J. P.
Liu
,
J. Appl. Phys.
111
,
07A731
(
2012
).
21.
Anonymous
.
New Match! Version 3.3.
https://www.crystalimpact.com/news/20161004a.htm. cited September 18,
2020
.
22.
H. M.
Rietveld
,
A profile refinement method for nuclear and magnetic structures. Journal of applied Crystallography
,
J. Appl. Cryst.
, vol.
2
, no.
2
, pp.
65
71
,
1969
.
23.
A. C.
Larson
and
R. B. V.
Dreele
, General structure analysis system (GSAS),
Los Alamos National Laboratory
,
Los Alamos, USA
,
1994
.
Report LAUR 86-748
.
24.
C. E. E.
Naranjo
,
J. S. T.
Hernandez
,
M. J. R.
Salgado
,
J. A.
Tabares
,
F.
Maccari
,
A.
Cortes
,
G. A. P.
Alcázar
,
Processing and characterization of Nd 2 Fe 14 B microparticles prepared by surfactant-assisted ball milling
,
Appl. Phys. A
, vol.
124
, no.
8
, pp.
1
6
,
2018
.
25.
A. K. M. M.
Haque
,
T. J.
Lee
,
H. M.
Jeong
and
H. S.
Chung
,
An experimental study of thermal performance of GN and MWCNTs-based aqueous nanofluids with surfactants SDS and SDBS
,
IOP Conf. Series: Mater. Sci. Eng.
, vol.
88
, no.
1
, pp.
012050
,
2015
.
This content is only available via PDF.
You do not currently have access to this content.