THD-Tricluster method is a triclustering analysis with a biclustering-based approach. The THD-Tricluster method uses the Shifting-and-Scaling Similarity (SSSim) value to form a bicluster first and shows it by forming a tricluster. The SSSim value uses Shifting-and-Scaling Correlation to use an interface with shifting and scaling patterns as well as intertemporal coherence and compares it with the threshold value. THD-Tricluster method was performed on treatment response data to interferon-beta therapy in multiple sclerosis patients. The optimal scenario is a scenario with a coverage value scenario that uses the highest threshold value. In this scenario, there are two types of tricluster, namely the tricluster which has a collection of genes in responsive patients and patients who are not responsive to therapy. The differences collection of genes in both tricluster can be used by medical professionals in the development of interferon-beta therapy treatments to create a therapy response on multiple sclerosis disease.

1.
A.
Kasim
,
Z.
Shkedy
,
S.
Kaiser
,
S.
Hochreiter
and
W.
Talloen
,
Applied Biclustering Methods for Big and High-Dimensional Data Using R. In Applied Biclustering Methods for Big and High-Dimensional Data Using R.
(
Chapman and Hall/CRC
,
Florida
,
2017
).
2.
T.
Siswantining
,
N.
Pratiwi
,
C. D.
Purwandani
,
M. H. D.
Susilowati
and
A.
Wibowo
,
Int. J. GEOMATE.
19
,
35
42
(
2020
).
3.
Y.
Cheng
and
G. M.
Church
ISMB
8
93
103
(
2000
).
4.
T.
Kakati
,
H. A.
Ahmed
,
D. K.
Bhattacharyya
and
J. K.
Kalita
,
Comput. Biol. Chem.
75
,
154
167
(
2018
).
5.
G.
Ardaneswari
,
A.
Bustamam
and
T.
Siswantining
,
AIP Conf. Proc.
1825
,
0200041
0200046
(
2017
).
6.
G.
Ardaneswari
,
A.
Bustamam
and
D.
Sarwinda
,
JPCS
893
,
1
8
(
2016
).
7.
Z. B.
Joseph
,
Bioinformatics Review
20
,
2493
2503
(
2004
).
8.
F. V.
Gomez
 et al.,
J.S Advances in Artificial Intelligence
7023
,
164
172
(
2011
).
9.
L.
Zhao
and
M. J.
Zaki
,
Tricluster
SIGMOD 2005,
694
705
(
2005
).
10.
R.
Henriques
and
S. C.
Madeira
,
ACM Comput. Surv.
51
,
1
43
(
2018
).
11.
X.
Wang
 et al.,
Nature.
454
,
126
130
(
2008
).
12.
Z.
He
,
Introduction to Bioinformatics. Data Mining for Bioinformatics Applications
, (
Woodhead Publishing
,
England
,
2015
) pp
11
17
.
13.
C. R.
Escudero
,
F. M.
Alvares
,
R. R
Zalis
and
I.
Zwir
,
Eighth Int. J. Hybrid. Intell. Syst
.
IEEE Computer Society
831
836
(
2008
).
14.
T.
Kakati
,
Ahmed
,
H. A.
Ahmed
,
D. K.
Bhattacharyya
and
J. K.
Kalita
,
ICTCS
16
,
3
8
(
2016
).
15.
H. A.
Ahmed
,
P.
Mahanta
,
D. K.
Bhattacharyya
, and
J. K.
Kalita
,
IEEE/ACM Transactions on Computational Biology and Bioinformatics
11
,
1239
1252
(
2014
).
16.
A.
Compston
and
A.
Coles
,
Lancet
372
,
1502
1517
(
2008
).
18.
A.
Bertolotto
and
F.
Gilli
,
Neurol. Sci.
29
, Suppl
2
:
S216
S217
. (
2008
).
19.
M.
Hecker
 et al.,
Int. J. Mol. Sci.
14
,
16087
16109
(
2013
).
20.
X.
Xu
,
Y.
Lu
,
A. K. H.
Tung
and
W.
Wang
,
ICDE’
06
,
89
99
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.