Sago (Metroxylon sagu) pulp is a common agricultural product; however, its pulp (from the main plant part and bark) finds no essential use and is considered agricultural waste. In this study, cellulose nanocrystals (CNCs) were isolated from the main pulp and bark pulp of sago through bleaching, alkali treatment, and acid hydrolysis. The hydrolysis was performed with 64% (w/w) sulfuric acid. A considerable yield was obtained for the extracted CNCs, 65.36% for sago main pulp (SMP), and 77.43% for sago bark pulp (SBP), which are comparable to other previous reported protocol. FTIR analysis of the resulting CNCs showed similar vibration frequencies with α-cellulose. Concerning the spherulites, considerable size reduction was revealed in the Scanning Electron Microscopy (SEM) analysis after acid hydrolysis of α-cellulose to obtain CNCs. Importantly, an image from the Transmission Electron Microscope (TEM) showed bundles of the needle-like structure of the extracted CNCs, which is a characteristic image of the CNCs after hydrolysis. Thermogravimetric analysis (TGA) also revealed the stability of the CNCs. Elemental analysis via EDX showed that the two forms of nanocellulose from the derived CNCs possessed mostly carbon and oxygen. The small amount of α-cellulose obtained (3-8%) was attributed to the degradation of α-cellulose, which may have been caused by the alternative bleaching process employed. Despite this, a reasonably good percent yield for CNCs was extracted, demonstrating sago pulp's potential as a useful source of this cellulosic nanomaterial.

1.
E.
Fortunatia
,
M.
Peltzerc
,
I.
Armentanoa
,
L.
Torrea
,
A.
Jiménezc
, and
J.M.
Kenny
,
Carbohydr. Polym.
90
,
948
956
(
2012
).
2.
P.
Tingaut
,
T.
Zimmermann
, and
G.
Sébe
,
J. Mater. Chem.
22
,
20105
(
2012
).
3.
J.
Bras
,
M.L.
Hassan
,
C.
Bruzesse
,
E.A.
Hassan
,
N.A.
El-Wakil
, and
A.
Dufresne
,
Ind. Crop. Prod.
32
,
627
633
(
2010
).
4.
A.L.
Pereira
,
D.M.
Nascimento
,
M.S.
Filho
,
J.S.
Morais
,
N.F.
Vasconcelos
,
J.P.
Feitosa
,
A.S.
Brigida
, and
M.F.
Rosa
,
Carbohydr. Polym.
112
,
165
172
(
2014
).
5.
M.M de Souza
Lima
, and
R.
Borsali
,
Macromol. Rapid Commun.
25
,
771
787
(
2004
).
6.
M.A.S.A.
Samir
,
F.
Alloin
, and
A.
Dufresne
,
Biomacromolecules
6
,
612
626
(
2005
).
7.
A.
Sturcova
,
G.R.
Davies
, and
S.J.
Eichhorn
,
Biomacromolecules
6
,
1055
1061
(
2005
).
8.
S.
Beck-Candanedo
,
M.
Roman
, and
D.G.
Gray
,
Biomacromolecules
6
,
1048
1054
(
2005
).
9.
A.K.
Veeramachineni
,
T.
Sathasivam
,
S.
Muniyandy
,
P.
Janarthanan
,
S.J.
Langford
, and
L.Y.
Yan
,
Appl. Sci.
6
,
170
(
2016
).
10.
R.S.
Singhal
,
J.F.
Kennedy
,
S.M.
Gopalakrishnan
,
A.
Kaczmarek
,
C.J.
Knill
, and
P.F.
Akmar
,
Carbohydr. Polym.
72
,
1
20
(
2008
).
11.
S.
Naduparambath
,
T.V.
Jinitha
,
V.
Shaniba
,
M.P.
Sreejith
,
K.
Aparna
, and
E.
Purushothaman
,
Carbohydr. Polym.
180
,
13
20
(
2018
).
12.
V.
Pushpamalar
,
S.J.
Langford
,
M.
Ahmad
, and
Y.Y.
Lim
,
Carbohydr. Polym.
64
,
312
318
(
2006
).
13.
M.
Nasir
,
R.
Hashim
,
O.
Sulaiman
, and
M.
Asim
, in
Cellulose-Reinforced Nanofiber Composites
, edited by
M.
Jawaid
,
S.
Boufi
, and
A. H. P. S.
Khalil
(
Woodhead Publishing Series in Composites Science and Engineering
,
2017
, volume
11
), pp.
261
276
.
14.
H.
Tibolla
,
F.M.
Pelissari
, and
F.
Menegalli
,
LWT-Food Sci. Technol.
59
,
1311
1318
(
2014
).
15.
A.K.R.
Choudhury
, “3-Pretreatment and preparation of textile materials prior to dyeing” in
Handbook of Textile and Industry Dyeing
(
Elsevier
,
2011
), pp
64
149
.
16.
A.
Kumar
,
Y.S.
Negi
,
V.
Choudhury
, and
N.K.
Bhardwaj
,
Journal of Materials Physics and Chemistry
2
,
1
8
(
2014
).
17.
W.
Somphol
,
P.
Prapainainar
,
P.
Sae-Oui
,
S.
Loykulnant
, and
P.
Dittanet
,
Materials Science Forum
936
37
41
(
2018
).
18.
Y.
Habibi
,
L.A.
Lucian
, and
O.J.
Rojas
,
Chem. Rev.
110
,
3479
3500
(
2010
).
19.
J.
George
, and
S.N.
Sabapathi
,
Nanotechnol. Sci. Appl.
8
,
45
54
(
2015
)
20.
M.
Janoobi
,
R.
Oladi
,
Y.
Davoudpour
,
K.
Oksman
,
A.
Dufresne
,
Y.
Hanzeh
, and
R.
Davoodi
,
Cellulose
,
22
,
935
969
(
2015
).
21.
J.I.
Moran
,
V.A.
Alvarez
,
V.P.
Cyras
, and
A.
Vázquez
,
Cellulose
15
,
149
159
(
2008
).
22.
W.
Kamphunthong
,
P.
Hornsby
, and
K.
Sirisinha
,
J. Appl. Polym. Sci.
125
,
1642
1651
(
2012
).
23.
T.W. Graham
Solomons
,
C.B.
Fryhle
,
Organic Chemistry.
10th Ed. (
John Wiley & Sons, Inc
.,
New Jersey
,
2011
), pp
53
97
.
24.
B.
Deepa
,
E.
Abraham
,
N.
Cordeiro
,
M.
Mozetic
,
A.P.
Mathew
,
K.
Oksman
,
M.
Faira
,
S.
Thomas
, and
L.A.
Pothan
,
Cellulose
22
,
1075
1090
(
2015
).
25.
S.
Elanthikkal
,
U.
Gopalakrsihnapanicker
,
S.
Varghese
, and
J.T.
Guthrie
,
Carbohydr. Polym.
80
,
852
859
(
2010
).
26.
H.
Kargarzadeh
,
I.
Ahmad
,
I.
Addullah
,
A.
Dufresne
,
S.Y.
Zainudin
, and
R.M.
Sheltami
,
Cellulose
19
,
855
866
(
2012
).
27.
P.
Lu
, and
Y.
Hsieh
,
Carbohydr. Polym.
87
,
564
573
(
2012
).
28.
J.W.
Rhim
,
J.P.
Reddy
, and
X.
Luo
,
Cellulose
,
22
,
407
420
(
2015
).
29.
K.
Song
,
X.
Zhu
,
W.
Zhu
, and
X.
Li
6
,
45
(
2019
).
30.
N.H.A.
Rahman
,
B.W.
Cheing
,
N.A.
Ibrahim
, and
N.A.
Rahman
,
Polymers (Basel)
,
9
,
588
(
2017
).
31.
H.
Liu
,
D.
Liu
,
F.
Yao
, and
Q.
Wu
,
Bioresour. Technol.
101
,
5685
5692
(
2010
).
32.
S.
Gopi
,
K.
Giribabu
, and
M.
Kathiresan
,
ACS Omega
3
,
6251
6258
(
2018
).
33.
A.
Wishkerman
, “Bromine and iodine in plant-soil systems,” Ph.D. Dissertation,
Heidelberg University
,
Germany
,
2006
.
This content is only available via PDF.
You do not currently have access to this content.