The SiO2−ZrO2 composite application has been widely applied in the areas of catalysts, corrosion, batteries, membranes, solar cell etc. One of the potential composite sources of SiO2-ZrO2 comes from the side results of zirconium oxychloride (ZOC) filtrate synthesis. So the purpose of this study is to recover the SiO2-ZrO2 compounds from the remaining ZOC filtrate synthesis by leaching and calcining (W&C) methods. The process of leaching by using hot water and the concentration of NaCl is determined by potentiometric titration. Meanwhile, the calcining process is conducted at the temperature of 900 °C and 700 °C, with a time of 1, 2.5, 4, 5.5, and 7 hours. The experimental results showed that the best quantity of SiO2-ZrO2 composites was at 900 °C calcination for 7 hours, with a maximum SiO2 concentration of 78.12%, ZrO2 of 19.44%, and the mass recovery decreased to 0,91. Similarly the emergence of the peak at the angle of diffraction SiO2 − ZrO2 FTIR composites were characterized by the appearance of spectra at 3450.54 cm-1, 2004.24 cm-1, 1633.03cm−1, 1109.20 cm−1, 809.22 cm−1, and 472.26 cm−1. Likewise, the appearance of angles at 2θ = 15°, 2θ = 30.2°, 2 θ = 50.01° and 2 θ = 60.0° were XRD pattern of the SiO2-ZrO2 composites. The difference in quality between the calcinations of 900 °C and 700 °C is located at an angle of diffraction 29 = 30-33 ° and the angle of diffraction 2 θ = 64 ° due to differences of SiO2 and ZrO2 concentrations. While the TEM images from the SiO2−ZrO2 composite calcined temperature of 900 °C and 700 °C in the form of mesoporous granules size.

1.
S. W.
Wang
,
X. X.
Huang
, and
J.K.
Guo
,
J. Mater. Sci
2, 32
,
197
201
(
1997
).
2.
S. W.
Wang
,
X. X.
Huang
, and
J. K.
Guo
,
J. Eur. Ceram. Soc
16, 10
,
1057
1061
(
1996
).
3.
H.
Kaper
,
K.
Bouchmella
,
P. H.
Mutin
, and
F.
Goettmann
,
Chem. Cat. Chem
4, 11
,
1813
1818
(
2012
).
4.
S.
Fatimah
,
M. P.
Kamil
,
J. H.
Kwon
,
M.
Kaseem
, and
Y. G.
Ko
,
J. Alloys Compd
707
,
358
364
(
2017
).
5.
D. W.
Choi
and
K. L.
Choy
,
Electrochim. Acta
218
,
47
53
, (
2016
)
6.
W.
Puthai
,
M.
Kanezashi
,
H.
Nagasawa
, and
T.
Tsuru
,
J. Memb. Sci
524
,
700
711
(
2017
).
7.
A.
Ayadi
,
N.
Bouaouadja
,
A.
Durán
, and
Y.
Castro
,
Ceram. Int
(
2020
).
8.
J.
Liu
,
J.
Song
,
T.
Qi
,
C.
Zhang
, and
J.
Qu
,
Adv. Powder Technol
27
,
1
,
1
8
(
2016
).
9.
R.
Liu
,
T.
Xue
,
J.
Song
,
Y.
Wang
,
T.
Qi
,
J.
Qu
, and
A.
Du
,
Ceram. Int
40
,
6
,
8801
8808
(
2014
).
10.
B. K.
Wang
,
H.
Ding
,
Y. X.
Zheng
, and
N.
Liang
,
Adv. Mater. Res
194–196
,
2164
2168
(
2011
).
11.
Muzakky
,
J. Iptek Nukl.
Ganendra
J. Nucl. Sci. Technol
21
,
1
,
37
43
, (
2018
).
12.
M. A. F. E.
Santos
,
I. P.
Lôbo
, and
R. S.
Da Cruz
,
Mater. Res
17, 3
,
700
707
(
2014
).
13.
A.
Kumar
,
S.
Singhal
,
S.
Aggarwal
,
R. P.
Badoni
, and
A. K.
Sharma
,
Catal. Sustain. Energy
,
5
,
1
,
34
40
(
2018
).
14.
X.
Hou
,
R.
Zhang
, and
B.
Wang
,
Ceram. Int
44
,
13
,
15440
15445
(
2018
).
15.
Y. H.
Sun
,
Q. H.
Ye
,
C. J.
Huo
,
H. Y.
Chen
,
X.
Lang
,
F.
David
,
Q. W.
Luo
, and
C. M.
Yang
,
Hydrometallurgy
139
,
64
72
(
2013
).
16.
L.
Peng
,
W.
Qisui
,
L.
Xi
, and
Z.
Chaocan
,
Colloids Surfaces A Physicochem. Eng. Asp
334
,
1-3
,
112
115
(
2009
).
17.
Nuryono
and
Narsito
,
Indones. J. Chem
5, 1
,
23
30
(
2005
).
18.
Y. B.
Ryu
and
M. S.
Lee
,
J.
Korean
Inst. Met. Mater
56
,
1
,
72
78
(
2018
).
19.
P. J.
Launer
,
Silicon Compound: Silanes & Silicones
(
2013
).
20.
S.
Kongwudthiti
,
P.
Praserthdam
,
W.
Tanakulrungsank
, and
M.
Inoue
,
J. Mater. Process. Technol
136
,
1-3
,
186
189
, (
2003
).
21.
C. G.
Sancho
,
R. M.
Tost
,
J. M.
Robles
,
J. S.
González
,
A. J.
López
, and
P. M.
Torres
,
Appl. Catal. A Gen
433–434
,
179
187
(
2012
).
22.
S. G.
Chen
,
Y. S.
Yin
, and
D. P.
Wang
,
J. Am. Ceram. Soc
88
,
4
,
1041
1045
(
2005
).
23.
W.
Puthai
,
M.
Kanezashi
,
H.
Nagasawa
,
K.
Wakamura
,
H.
Ohnishi
, and
T.
Tsuru
,
J. Memb. Sci
497
,
348
356
, (
2016
).
This content is only available via PDF.
You do not currently have access to this content.