LAPAN-A4 is a microsatellite developed by LAPAN Pusteksat. LAPAN-A4 has 5 optical payloads i.e. STTL Line Imager 4 Band (SLIM4), Experimental LAPAN Line Imager Space Application (ELLISA), Short Wave Infrared (SWIR), Long Wave Infrared (LWIR-A4), and LWIR BPPT/Hokkaido-A4 which have more advance than previous satellites (LAPAN-TUBSat, LAPAN-A2, LAPAN-A3). This paper aims to explore the potential utilization of imagery from LAPAN-A4 satellites. This paper was made through a literature study of various papers that utilize imagery from Landsat 7, Landsat 8, Sentinel, and ASTER satellites that have band specifications and resolution similar to the LAPAN-A4 camera. The results of this paper conclude that the RGB-NIR band image has the potential to classify landcover, classify land use, disaster monitoring, oil spill monitoring, and urban area monitoring. The potential use of the SWIR band has a greater role in water monitoring, wildfire response, and estimation of soil moisture content. LWIR band plays an important role at ground surface temperatures such as forest fire monitoring, volcano monitoring, geothermal potential, and evapotranspiration.

1.
R. H.
Triharjanto
, “
Development of Micro-satellite Technology at the Indonesian National Institute of Aeronautics and Space (LAPAN)
,” in
CONF NAME
,
17th CEReS Int. Symp. Proc
. (
2012
).
2.
S.
Salaswati
and
A. H.
Syafrudin
, “
ELLISA (Experiment LAPAN Line Imager Space Application) optical filter design for LAPAN-A4 satellite
,” (
2018
).
3.
R.
Hartono
,
D.
Ardianto
,
S.
Salaswati
,
R.
Yatim
, and
A. H.
Syafrudin
, “
Design requirement of LWIR optical filter for LAPAN-A4 satellite
,” in
IEEE Int. Conf. Aerosp. Electron. Remote Sens. Technol.-2019
,
IEEE Int. Conf. Aerosp. Electron. Remote Sens. Technology (Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
,
2019
), pp.
1
7
.
4.
Allen
,
P.
 et al. 
Datasheet Lapan slim4 icd
.
Surrey Satellite Technology Limited
.
UK
(
2016
)
5.
M.
Mohajane
, et al.,
Environments
5
,
131
(
2018
).
6.
S. S.
Rwanga
and
J.M.
Ndambuki
,
Int. J. Geosci.
08
,
611
622
(
2017
).
7.
D.
Lu
,
P.
Mausel
,
M.
Batistella
, and
E.
Moran
,
Int. J. Remote Sens.
26
,
101
114
(
2005
).
8.
C. J.
Tucker
,
Remote Sens. Environ.
8
,
127
150
(
1979
).
9.
ERDAS Field Guide
(
ERDAS, Inc
.,
Norcross, GA
,
2009
).
10.
R. G.
Congalton
,
Remote Sens. Environ.
37
,
35
46
(
1991
).
11.
Y.
Yusuf
,
M.
Matsuoka
, and
F.
Yamazaki
,
J. Indian Soc. Remote Sens.
29
,
17
22
(
2001
).
12.
N.
Kerle
,
Int. J. Appl. Earth Obs. Geoinf.
12
,
466
476
(
2010
).
13.
C.
Andreou
and
V.
Karathanassi
, “Endmember detection in marine environment with oil spill event,” in
Image and Signal Processing for Remote Sensing XVII
, Proc. of SPIE
8180
, edited by
L.
Bruzzone
(
SPIE
,
Bellingham, WA
,
2011
), pp.
81800P
81800P
-8.
14.
E.
Bayramov
,
M.
Kada
, and
M.
Buchroithner
,
J. Oper. Oceanogr.
11
,
27
43
(
2018
).
15.
M. S.
Ozigis
,
J. D.
Kaduk
, and
C. H.
Jarvis
,
Environ. Sci. Pollut. Res.
26
,
3621
3635
(
2019
).
16.
K.
Xiao
and
H.
Xu
, “Detection of oil spill in Mexico Gulf based on MODIS data,” in
Int. Conf. Multimed. Technol.-2010
(
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
,
2010
), pp.
3
6
.
17.
D.
Zhao
,
X.
Cheng
,
H.
Zhang
, and
H.
Zhang
, “An oil slick detection index based on Landsat 8 remote sensing images,” in
2018 Int. Work. Big Geospatial Data Data Sci.
(
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
,
2018
), pp.
1
4
.
18.
A.
Taravat
and
F. D.
Frate
,
EURASIP J. Adv. Signal Process.
2012
,
1
8
(
2012
).
19.
N.
Arslan
,
Environ. Monit. Assess.
190
,
637
(
2018
).
20.
H.
Xu
,
S.
Huang
, and
T.
Zhang
,
Adv. Sp. Res.
52
,
1437
1449
(
2013
).
21.
Y.
Xi
,
N. X.
Thinh
, and
C.
Li
,
Eur. J. Remote Sens.
52
,
240
252
(
2019
).
22.
Xenics
. et al. Datasheet Lynx-2048-CL, World’s highest resolution SWIR line-scan camera with excellent sensitivity.
Xenics Infrared Solution
.
Belgium
(
2020
).
23.
S.
Li
, et al.,
IEEE Trans. Geosci. Remote Sens.
51
,
1852
1862
(
2013
).
24.
J. H.
Ryu
,
J. S.
Won
, and
K. D.
Min
,
Remote Sens. Environ.
83
,
442
456
(
2002
).
25.
K.
Cho
,
Y.
Kim
, and
Y.
Kim
,
Remote Sens.
10
,
105
(
2018
).
26.
T. A.
Schroeder
,
M. A.
Wulder
,
S. P.
Healey
, and
G. G.
Moisen
,
Remote Sens. Environ.
115
,
1421
1433
(
2011
).
27.
S.
Fabre
,
X.
Briottet
, and
A.
Lesaignoux
,
Sensors (Switzerland)
15
,
3262
3281
(
2015
).
28.
Y.
Sheng
,
P.
Gong
, and
Q.
Xiao
,
Int. J. Remote Sens.
22
,
1709
1724
(
2001
).
29.
R.
Bryant
, et al., “
Evaluation of hyperspectral, infrared temperature and radar measurements for monitoring surface soil moisture
,” in
The First Interagency Conference on Research in the Watersheds
,
Proc. 1st Interagency Conf. on Research in the Watersheds
(
U.S. Dept. of Agriculture, Agricultural Research Service
,
Washington D. C
.,
2003
) pp.
528
533
.
30.
S.
Khanna
, et al.,
Remote Sens. Environ.
109
,
154
165
(
2007
).
31.
S. N.
Haubrock
,
S.
Chabrillat
,
C.
Lemmnitz
, and
H.
Kaufmann
,
Int. J. Remote Sens.
29
,
3
29
(
2008
).
32.
Xenics
. et al. Datasheet L. Gobi-640-CL High resolution uncooled thermal CameraLink camera Smallest thermal CameraLink camera and easy-to-integrate.
Xenics Infrared Solution
.
Belgium
(
2020
)
33.
L.
Glaze
,
P. W.
Francis
, and
D. A.
Rothery
,
Nature
338
,
144
146
(
1989
).
34.
D. A.
Rothery
,
P. W.
Francis
, and
C. A.
Wood
,
J. Geophys. Res.
93
,
7993
8008
(
1988
).
35.
M.
Blackett
,
Remote Sens.
6
,
2282
2295
(
2014
).
36.
B.
Mia
,
Y.
Fujitmisu
, and
J.
Nishijima
,
Geosciences
7
,
118
(
2017
).
37.
M.
Silvestri
, et al.,
Remote Sens.
12
,
184
(
2020
).
38.
M.
Sahana
,
H.
Sajjad
, and
R.
Ahmed
,
Model. Earth Syst. Environ.
1
,
0
10
(
2015
).
39.
P.
Sofan
,
D.
Bruce
,
E.
Jones
, and
J.
Marsden
,
Remote Sens.
11
, (
2019
).
40.
R.
Diak
, et. al.,
Bull. Am. Meteorol. Soc.
65
78
(
2004
) doi:.
41.
N.
Agam
,
W. P.
Kustas
,
M. C.
Anderson
,
F.
Li
, and
P. D.
Colaizzi
,
Geophys. Res. Lett.
35
,
1
7
(
2008
).
42.
J. A.
Voogt
and
T. R.
Oke
,
Remote Sens. Environ.
86
,
370
384
(
2003
).
43.
H. A.
Effat
and
O. A. K.
Hassan
,
Urban Clim.
10
,
171
188
(
2014
).
44.
M. K.
Almutairi
,
J. Geosci. Environ. Prot.
03
,
18
23
(
2015
).
45.
Y.
Li
,
H.
Zhang
, and
W.
Kainz
,
Int. J. Appl. Earth Obs. Geoinf.
19
,
127
138
(
2012
).
46.
L.
Liu
and
Y.
Zhang
,
Remote Sens.
3
,
1535
1552
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.