The performance of the propellant depends on its energy density, which is equal to the density of the propellant multiplied by the energy of the propellant. The actual density of composite propellant can be determined by the Archimedes Principle. And the present theoretical density of composite propellant is calculated by the assumption their component is the same phase and the mixing is homogeneous. But, the apparent density (actual density divided by theoretical density) still more significant low than 100%, which means the actual density more significant difference from the theoretical density. This paper proposed the sphere packing density theory was added to improve the calculation theoretical density of composite propellant. This method produced the result of apparent density a better value close to 100%. The improvement of the theoretical calculation method for composite propellant density can be used as a reference in making a composite propellant formulation design, checking the homogeneity of the composition mixture, and improving the propellant process method.

1.
B.
Prianto
,
H.
Setyaningsih
, and
R.R.
Puspitasari
,
7th International Seminar on Aerospace Science and Technology – ISAST 2019
2226
, (
2020
).
2.
S.
Chaturvedi
,
P. N.
Dave
, and
N. N.
Patel
,
Applied Nanoscience
5
,
93
(
2014
).
3.
M.
Abdullah
,
F.
Gholamian
, and
A.
Zarei
,
Journal of Propulsion and Power
(
2014
).
4.
S.
Asthana
,
Defence Science Journal
(
2013
).
5.
B.-S.
Min
and
H. S.
Hyun
,
Journal of Propulsion and Power
28
,
211
(
2012
).
6.
B. C.
Terry
,
T. R.
Sippel
,
M. A.
Pfeil
,
I. E.
Gunduz
, and
S. F.
Son
,
Journal of Hazardous Materials
317
,
259
(
2016
).
7.
K. V. Suresh
Babu
,
P. Kanaka
Raju
,
C. R.
Thomas
,
A. Syed
Hamed
, and
K. N.
Ninan
,
Defence Technology
13
,
239
(
2017
).
8.
K.
Kuo
and
R.
Acharya
,
Applications of Turbulent and Multiphase Combustion
(
2012
).
9.
L.
Zhang
,
R.
Tian
, and
Z.
Zhang
,
Aerospace Science and Technology
62
,
31
(
2017
).
10.
W.
Ao
,
X.
Liu
,
H.
Rezaiguia
,
H.
Liu
,
Z.
Wang
, and
P.
Liu
,
Acta Astronautica
136
,
219
(
2017
).
11.
K.
Gańczyk-Specjalska
,
Problems of Mechatronics. Armament, Aviation, Safety Engineering
8
,
55
(
2017
).
12.
D.
Trache
,
F.
Maggi
,
I.
Palmucci
,
L. T.
DeLuca
,
K.
Khimeche
,
M.
Fassina
,
S.
Dossi
, and
G.
Colombo
,
Arabian Journal of Chemistry
(
2015
).
13.
R.
Sangtyani
,
H. S.
Saha
,
A.
Kumar
,
A.
Kumar
,
M.
Gupta
, and
P. V.
Chavan
,
Combustion and Flame
209
, (
2019
).
14.
A.
Ambekar
and
J. J.
Yoh
,
Applied Thermal Engineering
130
,
492
(
2018
).
15.
M. M.
Rueda
,
M. C.
Auscher
,
R.
Fulchiron
,
T.
Périé
,
G.
Martin
,
P.
Sonntag
, and
P.
Cassagnau
,
Progress in Polymer Science
66
,
22
(
2017
).
16.
J. C.
Thomas
,
A. R.
Demko
,
T. E.
Sammet
,
D. L.
Reid
,
S.
Seal
, and
E. L.
Petersen
,
Propellants, Explosives, Pyrotechnics
41
,
822
(
2016
).
17.
P.
Kakavas
,
International Journal of Solids and Structures
(
2014
).
18.
M. L.
Gross
,
T. D.
Hedman
,
S. F.
Son
,
T. L.
Jackson
, and
M. W.
Beckstead
,
Combustion and Flame
160
,
982
(
2013
).
19.
L. Q.
Xiao
,
X. Z.
Fan
,
J. Z.
Li
,
Z.
Qin
,
X. L.
Fu
,
W. Q.
Pang
, and
Y.
Wang
,
Combustion and Flame
214
,
80
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.