This paper discusses the castability, mixed viscoelasticity and voids of the propellant based AP/HTPB/TDI with HTPB-TDI binders. Several influential variables were observed including the plasticizer and the order in which the curing agent was added. Then the mixer used is also horizontal and planetary (vertical) mixers in order to obtain the scale up or scale down parameters between mixers. First experiment was mixed propellant formulation in a 5 kg horizontal sigma blade mixer, which was set up at 55°C and 60 rpm. The composition of propellant was 14% of HTPB, 7.5% of Al powder, 77.5% of AP with coarse, medium, fine ratio 1/1/1, and 1% of TDI. Propellant slurry as mixing product was casted into vacuum casting chamber then grained as desired, cured at 60°C for 2 days, was left in room temperature for a week. The propellant was X-Ray scanned and viscosity measurement at 3 rpm spindle speed. This experiment was repeated with the addition of TDI in the first sequence and the end sequence. The experiments were repeated with addition of DOA for 0.5 to 4%. The order of adding TDI in the propellant mixing process affects the viscoelasticity and castability of AP / HTPB / Al composite propellant. The mixing of the TDI at the end process will provide a better mixing space and evenly distributed particle distribution, is better applied to large rockets that require a longer treatment. Scale up and scale down of propellant mixers can use similarity while maintaining the same viscoelasticity and operating conditions. The addition of DOA increase pot life and viscoelasticity, but there are limitations to where the dough can be molded or processed. The maximum addition of DOA is 2.74% to produce a dough with an even distribution of particles with the added bonding agent.

1.
H. B.
Wibowo
,
KAJIAN PROGRAM PENINGKATAN KINERJA PROPELAN KOMPOSIT BERBASIS AP/HTPB/AL
.
J Teknol Dirgant.
Published online
2019
. doi:
2.
J. O.
Hamed
,
O. O.
Ogunleye
,
C. A.
Osheku
,
Optimal design of a composite propellant formulation using response surface methodology
.
Adv Mater Sci.
Published online
2017
. doi:
3.
H. B.
Wibowo
,
Cahyo
W
,
Sanggra
R.
Bulk polymerization kinetics of hydroxyl terminated polybutadiene and toluene diisocyanate with infrared spectroscopy
.
Indones J Chem.
Published online
2018
. doi:
4.
H. B.
Wibowo
,
Dharmawan
WC
,
Wibowo
RSM
,
Yulianto
A.
Kinetic study of HTPB (Hydroxyl Terminated Polybutadiene) Synthesis Using Infrared Spectroscopy
.
Indones J Chem.
Published online
2020
. doi:
5.
Hartaya
K.
ANALISIS KANDUNGAN ALUMINIUM POWDER PROPELAN BERDASAR ENERGI PEMBAKARAN DARI BOMB KALORIMETER
.
J Teknol Dirgant.
Published online
2016
. doi:
6.
Kuo
KK
,
Acharya
R.
Applications of Turbulent and Multiphase Combustion.
;
2012
. doi:
7.
Jawalkar
SN
,
Mehilal
,
Kurva
R
,
Singh
PP
,
Bhattacharya
B.
Influence of bicurative on processibility of composite propellant
.
Def Sci J.
Published online
2007
. doi:
8.
Mahanta
AK
,
Goyal
M
,
Pathak
DD
.
Rheokinetic analysis of hydroxy terminated polybutadiene based solid propellant slurry
.
E-Journal Chem.
Published online
2010
. doi:
9.
Ardianingsih
R
,
Kumoro
AC
.
Analisis Viskositas Slurry Propelan Untuk Akurasi Karakterisasi Rheologi Berbasis Perekat Hidroxy Terminated Polybutadiene Dengan Plasticizer Dioctyl Adipate
.
TEKNIK.
Published online
2019
. doi:
10.
Santhosh
G
,
Reshmi
S
,
Reghunadhan Nair
CP
.
Rheokinetic characterization of polyurethane formation in a highly filled composite solid propellant
.
J Therm Anal Calorim.
Published online
2020
. doi:
11.
Nair
CPR
,
Devi
CH
,
Prasad
V
,
Ninan
KN
.
Effect of Process Parameters on the Viscosity of AP / Al / HTPB Based Solid Propellant Slurry
.
J Energy Chem Eng.
Published online
2013
.
12.
Ramesh
K
,
Jawalkar
SN
,
Sachdeva
S
,
Mehilal
,
Bhattacharya
B.
Development of a composite propellant formulation with a high performance index using a pressure casting technique
.
Cent Eur J Energ Mater.
Published online
2012
.
13.
Restasari
A
,
Abdillah
LH
,
Budi
RS
,
Hartaya
K.
Pengaruh Dioctyl Adipate Terhadap Sifat Rheologi HTPB Terplastisasi
.
J Teknol Dirgant.
2018
;
16
(
2
):
139
149
.
14.
Restasari
A
,
Abdillah
LH
.
Pengaruh Dioctyl Adipate Terhadap Pot-Life Proopelan Berformula AP Trimoda
.
Pros SIPTEKGAN XXI.
Published online
2017
:
314
322
.
15.
Wypych
G.
Handbook of Plasticizers
. 2nd ed.
ChemTec Publishing
;
2012
.
16.
Wilkes
C
,
Daniels
C
,
Summers
J.
Plasticizers
.
Hanser
;
2005
.
17.
Fred W.
Billmeyer
.
18.
Muthiah
R
,
Somasundaran
UI
,
Verghese
TL
,
Thomas
VA
.
Energetics and compatibility of plasticizers in composite solid propellants
.
Def Sci J.
1989
;
39
(
2
):
147
155
. doi:
19.
Manu
SK
.
Glycidyl Azide Polymer (GAP) as a High Energy Polymeric Binder for Composite Solid Propellant Applications
.
2009
;(May).
20.
Li
H
,
Wang
J
,
An
C.
Study on the Rheological Properties of CL-20 / HTPB Casting Explosives
.
Cent Eur J Energ Mater.
2014
;
11
(
2
):
237
255
.
21.
Atiemo-Obeng
VA
,
Penney
WR
,
Armenante
P.
Solid-Liquid Mixing
. In:
Paul
EL
,
Atiemo-Obeng
VA
,
Kresta
SM
, eds.
HANDBOOK OF INDUSTRIAL MIXING : Science and Practice.
John Wiley & Sons, Inc.;
2004
:
543
584
. doi:
22.
Manjunath
K
,
Dhodapkar
S
,
Jacob
K.
 Solid Mixing, Part B. In:
Paul
EL
,
Atiemo-obeng
VA
,
Kresta
SM
, eds.
HANDBOOK OF INDUSTRIAL MIXING : Science and Practice
.
John Wiley & Sons, Inc
.;
2004
:
924
986
.
23.
Zhou
G
,
Tanguy
PA
,
Dubois
C.
Power consumption in a double planetary mixer with non-newtonian and viscoelastic materials
.
Trans IChemE.
2000
;
78
(April). doi:
24.
Todd
DB
. Mixing of Highly Viscous Fluids, Polymers, and Pastes. In:
Paul
EL
,
Atiemo-Obeng
VA
,
Kresta
SM
, eds.
HANDBOOK OF INDUSTRIAL MIXING : Science and Practice
.
John Wiley & Sons, Inc
.;
2004
:
987
1026
.
25.
Dewi
WU
,
Ismah
YA
.
Dekomposisi Termal Propelan Komposit Berbasis Amonium Perklorat/Hydroxy Terminated Polybutadiene (Ap/Htpb) (the Thermal Decomposition Analysis of Ammonium Perchlorate/Hydroxyterminated Polybutadiene (Ap/Htpb) Composite Solid Propellant)
.
J Teknol Dirgant.
2018
;
14
(
1
):
17
. doi:
26.
Dewi
WU
.
Evaluasi Kinetika Dekomposisi Termal Propelan Komposit Ap/Htpb Dengan Metode Kissinger, Flynn Wall Ozawa Dan Coats - Redfren (Evaluation of Thermal Decomposition Kinetics of Ap/Htpb Composite Solid Propellant Using Kissinger, Flynn Wall Ozawa and Coats –
.
J Teknol Dirgant.
2017
;
15
(
2
):
115
132
.
27.
K
MA
,
Monika
G
,
D
PD
.
Empirical Modeling of Chemoviscosity of Hydroxy Terminated Polybutadiene Based Solid Composite Propellant Slurry
.
Malaysian Polym J.
Published online
2010
.
28.
Sciamareli
J
,
Koyama Takahashi
MF
,
Teixeira
JM
,
Iha
K.
Propelente sólido compósito polibutadiênico: I-influência do agente de ligação
.
Quim Nova.
Published online
2002
. doi:
29.
Niehaus
M
,
Greeb
O.
Optimization of propellant binders - Part two: Macroscopic investgation of the mechanical properties of polymers
.
Propellants, Explos Pyrotech.
Published online
2004
. doi:
30.
Zhang
XH
,
Zhao
FQ
,
Tan
HM
.
Improving mechanical property of CMDB propellant containing nitramine with bonding agent
.
Huozhayao Xuebao/Chinese J Explos Propellants.
Published online
2005
.
31.
Zou
YC
,
Zhang
YL
,
Zhao
CY
,
Gao
WB
,
Yang
RJ
.
Effects of Bonding Agents on Mechanical Properties of Polytriazole Polyether Solid Composite Propellant
.
Tuijin Jishu/Journal Propuls Technol.
Published online
2018
. doi:
32.
Stockler Denise
V. B. P
,
Rezende
LC
,
Kawamoto
AM
, et al. 
Formulation tailoring of AP/HTPB composite propellants containing a polyamine-type bonding agent
.
Int Annu Conf ICT.
Published online
2008
.
33.
Hori
K
,
Iwama
A
,
Fukuda
T.
FTIR spectroscopic study on the Interaction between Ammonium Perchlorate and Bonding Agents
.
Propellants, Explos Pyrotech.
Published online
1990
. doi:
34.
M. T.
Cucksee
,
H. C.
Allen
, “
Bonding agent system for improved propellant aging and low temperature physical properties
,” U.S. Patent 4090893A (
1977
)
35.
B.
Finck
,
G.
Doriath
,
J.-P.
Martenot
, “
Solid propellant containing an aziridinyl bonding agent
,” U.S. Patent 4747891A (
1985
)
This content is only available via PDF.
You do not currently have access to this content.