Post tsunami, the authorities still highly dependent on human labor in most of the search and rescue processes, while at the same time, the lives of the rescuers are also at stake and extremely crucial to avoid the further accident. Based on these conditions, the assistance of disaster robots is highly needed, which capable of operating in the unknown disaster area. This research presents an implementation of 2D local aerial path planning with obstacle avoidance for quadcopter as an aerial disaster robot. The research is divided into 2 different approaches, simulation, and prototype implementation. The simulation of aerial path planning algorithm utilized RViz 3D visualization tool for ROS Melodic Morenia on Ubuntu 18.04. The prototype quadcopter robot implementation combines the utilization of X-type frame mechanics, Pixhawk flight controller, DroneKit-Python software API, and VL53L0X Lidars as laser distance sensors facing in 5 sides around the quadcopter. In both approaches, laser distance sensor readings are processed into a histogram as basis data for the local path planning algorithm. Vector Field Histogram + algorithm is utilized to determine the path taken and obstacle avoidance maneuver. The research result targets are simulation and prototype implementation of the proposed aerial path planning algorithm. It is proven with the curving flight trajectory of the quadcopter when flying to the given waypoint while avoiding obstacles along the way. Different cost function adjustments of the aerial path planning algorithm resulted in different motion responses of the quadcopter robot while avoiding obstacles along the way to the given waypoint. The higher the safety distance and turning radius variables, the more responsive the motion of the quadcopter robot while avoiding obstacles and vice versa.

1.
Badan Nasional Penanggulangan Bencana (BNPB)
.
2014
. Rencana Nasional Penanggulangan Bencana 2015-2019.
Badan Nasional Penanggulangan Bencana (BNPB
).
Jakarta
.
2.
Amri
,
M.R.
,
Yulianti
,
G.
,
Yunus
,
R.
,
Wiguna
,
S.
,
Adi
,
A.W.
,
Ichwana
,
A.N.
,
Randongkir
,
R.E.
, and
Septian
,
R.T.
2016
.
In RISIKO BENCANA INDONESIA
. Eds.
Jati
,
R.
, and
Amri
,
MR.
Direktorat Pengurangan Risiko Bencana
.
Jakarta
.
3.
Tadokoro
,
S.
,
Seki
,
S.
, and
Asama
,
H.
2013
. “
Priority Issues of Disaster Robotics in Japan
”.
Proceeding of 2013 IEEE Region 10 Humanitarian Technology Conference
.
Sendai
.
4.
Tadokoro
,
S.
2009
. “
DDT Project on Robots and Systems for Urban Search and Rescue
”.
IEEE ROBOTICS & AUTOMATION MAGAZINE.
Pp.
108
109
.
5.
Stormont
,
D.P.
and
Allan
,
V.H.
2009
. “
Managing Risk in Disaster Scenarios with Autonomous Robots
”.
The Journal on Systemics, Cybernetics and Informatics.
Vol.
7
. No.
4
. Pp.
66
71
.
6.
Murphy
,
R.R.
2014
.
In DISASTER ROBOTICS
. Ed.
Arkin
,
R.C.
The MIT Press
.
Cambridge
.
7.
Gupta
,
S.G.
,
Ghonge
,
M.M.
&
Jawandhiya
,
P.M.
2013
. “
Review of Unmanned Aircraft System (UAS
)”.
International Journal of Advanced Research in Computer Engineering & Technology.
Vol.
2
. No.
4
. Pp.
1646
1658
.
8.
Sulistijono
,
I.A.
and
Risnumawan
,
A.
2016
. “
From Concrete to Abstract: Multilayer Neural Networks for Disaster Victims Detection
”.
Proceeding of 2016 International Electronics Sysmposium
. Pp.
93
98
.
9.
Sulistijono
,
I.A.
,
Imansyah
,
T.
,
Muhajir
,
M.
,
Sutoyo
,
E.
,
Anwar
,
M.K.
,
Satriyanto
,
E.
,
Basuki
,
A.
, and
Risnumawan
,
A.
2018
. “
Implementation of Victims Detection Framework on Post Disaster Scenario
”.
Proceeding of 2018 International Electronics Symposium on Engineering Technology and Applications
. Pp.
253
259
.
10.
Waharte
,
S.
and
Trigoni
,
N.
2010
. “
Supporting Search and Resue Operations with UAVs
”.
Proceeding of 2010 International Conference on Emerging Security Technologies
.
Canterbury
.
11.
Wicaksono
,
H.
,
Prihastono
,
Anam K.
,
Effendi
,
R.
,
Sulistijono
,
I.A.
,
Kuswadi
,
S.
,
Jazidie
,
A.
, and
Sampei
M.
2008
. “Perancangan Sistem Navigasi Otonom pada Behavior Based Hexapod Robot”.
Jurnal Teknik Elektro
. Vol.
8
. No.
2
.
Universitas Kristen Petra
.
Surabaya
. Pp.
70
78
.
12.
Wicaksono
,
H.
,
Khoswanto
,
H.
, and
Kuswadi
,
S.
2011
. “
Behaviors Coordination and Learning on Autonomous Navigation of Physical Robot
”.
Telecommunication, Computing, Electronics, and Control.
Vol.
9
. No.
3
. Pp.
473
483
.
13.
Ulrich
,
I.
and
Borenstein
,
J.
1998
. “
VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots
”.
Proceeding of the 1998 IEEE International Conference on Robotics and Automation. Leuven
. Pp.
1572
1577
.
14.
Zhuang
,
H.Z
,
Du
,
S.X.
, and
Wu
,
T.J.
2005
. “
Real-Time Path Planning for Mobile Robots
”.
Proceeding of 2005 International Conference on Machine Learning and Cybernetics
. Pp.
526
531
.
15.
Buniyamin
,
N.
,
Ngah
,
W.W.
,
Sariff
,
N.
, and
Mohamad
,
Z.
2011
. “
A Simple Local Path Planning Algorithm for Autonomous Mobile Robot
”.
International Journal of Systems Applications, Engineering & Development.
Pp.
151
159
.
16.
Peralta
,
F.
,
Arzamendia
,
M.
,
Gregor
,
D.
,
Reina
,
D.G.
, and
Toral
,
S.
2020
. “
A Comparison of Local Path Planning Techniques of Autonomous Surface Vehicles for Monitoring Applications: The Ypacarai Lake Case-study
”.
MDPI Journal Sensors.
Vol.
20
. No.
5
.
17.
Vilhjalmsson
,
V.
2016
.
Risk-based Pathfinding for Drones
. Master Thesis.
Eidgenoessische Technische Hochschule Zürich
.
Zurich
.
18.
Moravec
,
H.P.
1988
. “
Sensor Fusion in Certainty Grids for Mobile Robots
”.
AI Magazine.
Pp.
61
74
.
19.
Elves
,
A.
1989
. “
Using Occupancy Grids for Mobile Robot Perception and Navigation
”.
Computer Magazine.
Pp.
46
57
.
20.
van Breda
,
R.J.
2016
. Vector Field Histogram Star Obstacle Avoidance System for Multicopters. Master Thesis.
Stellenbosch University
.
Stellenbosch
.
This content is only available via PDF.
You do not currently have access to this content.