The strain of a flexible current-carrying orthotropic cone with orthotropic electrical conductivity under external mag- netic fleld and external electric current is considered in this paper; and the effect of account for the conicity when determining the stress state of current-carrying orthotropic shells in a geometrically nonlinear statement is studied. It was revealed that the interaction of magnetic induction and shearing force causes the appearance of extreme values of shell stresses.
REFERENCES
1.
Y. M.
Grigorenko
and L. V.
Mol‘chenko
, Fundamentals of the Theory of Plates and Shells with Elements of Magnetoelasticity (Textbook)
(IPTs
, 2010
).2.
L. V.
Mol‘chenko
, I. I.
Loos
, and R. S.
Indiaminov
, “Determining the stress state of flexible orthotropic shells of revolution in magnetic field
,” Int. Appl. Mech
44
, 882
–891
(2008
).3.
R.
Indiaminov
, “On the absence of the tangential projection of the lorenz force on the axsymmetrical stressed state of current-carrying conic shells
,” Int. Jour. Comp. Techn.
13
, 65
–77
(2008
).4.
L. V.
Mol‘chenko
, I. I.
Loos
, and R. S.
Indiaminov
, “Stress–strain state of flexible ring plates of variable stiffness in a magnetic field
,” Int. Appl. Mech.
45
, 1236
–1242
(2009
).5.
L. V.
Mol‘chenko
and I. I.
Loos
, “The stress state of a flexible orthotropic spherical shell subject to external current and mechanical force in a magnetic field
,” Int. Appl. Mech.
49
, 528
–533
(2013
).6.
L. V.
Mol‘chenko
, I. I.
Loos
, and L. M.
Fedorchenko
, “Deformation of a flexible orthotropic spherical shell of variable stiffness in a magnetic field
,” Int. Appl. Mech
52
, 56
–61
(2016
).7.
R. S.
Indiaminov
, “Magnetoelastic deformation of a current-carrying orthotropic conical shell with an orthotropy of conductive properties
,” Bulletin of the University of Kiev
5
, 81
–86
(2015
).8.
R.
Indiaminov
, U.
Akbaev
, and A.
Dustmuradov
., “Nonlinear deformation of flexible orthotropic shells of variable thickness in the non stationary magnetic field
,” International Journal of Engineering Innovation & Research
5
, 234
–238
(2016
).9.
R.
Indiaminov
, R.
Butaev
, and S.
Mavlanov
, “Research of deformation of the current carrying orthotropic shells in nonlinear statement
,” ISJ Theoretical, Applied Science
09
(65
), 25
–30
(2018
), doi.org/10.15863/TAS.10.
R. S.
Indiaminov
and R.
Butaev
, “Stress-strain state of current-carrying shells in a magnetic field
,” ISJ Theoretical & Applied Science
, 05
(85
), 489
–492
(2020
), dx.doi.org/10.15863/TAS.11.
R.
Indiaminov
, A.
Hotamov
, and F.
Akhmedov
, “Magnetoelastic deformation of the current carrying shells with the orthotropy of conductive properties
,” International Journal of Engineering Innovation & Research
5
, 344
–350
(2017
).12.
R.
Indiaminov
and S.
Rustamov
, “Axisymmetric magnetoelastic shells deformation with account for anisotropy of conductive properties
,” ISJ Theoretical & Applied Science
, 11
(79
), 554
–559
(2019
), doi.org/10.15863/TAS.13.
R. S.
Indiaminov
, A. S.
Narkulov
, and U. K.
Zarpullaev
, “Mathematical modeling of magnetoelastic vibrations of a rod in a magnetic field
,” ISJ Theoretical & Applied Science
, 03
(83
), 327
–332
(2020
), 10.15863/TAS.14.
H. A.
Primova
, D. M.
Sotvoldiyev
, R. T.
Raximov
, and X.
Bobabekova
, “Computing fuzzy integral of the basis of fuzzy mesure
,” Journal of Physics: Conference Series
1441
, 7
(2020
), doi:.15.
R.
Indiaminov
, S.
Kholjigitov
, and A. S.
Narkulov
, “Nonlinear vibrations of a currentcarrying anisotropic cylindrical shell in a magnetic field
,” ISJ Theoretical & Applied Science
01
(81
), 205
–211
(2020
), 10.15863/TAS.16.
R. S.
Indiaminov
and R.
Butaev
, “Nonlinear integro-differential equations of bending of physically nonlinear viscoelastic plates
,” IOP Pub- lishing. Conf. Series: Materials Science and Engineering
, 7
(2020
), .
This content is only available via PDF.
© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.